Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a 'roll': MIT researchers devise new cell-sorting system

07.03.2008
Process could yield low-cost tool for diagnosing cancer, other diseases

Capitalizing on a cell's ability to roll along a surface, MIT researchers have developed a simple, inexpensive system to sort different kinds of cells - a process that could result in low- cost tools to test for diseases such as cancer, even in remote locations.

Rohit Karnik, an MIT assistant professor of mechanical engineering and lead author of a paper on the new finding appearing this week in the journal Nano Letters, said the cell-sorting method was minimally invasive and highly innovative.

“It's a new discovery,” Karnik said. “Nobody has ever done anything like this before.”

The method relies on the way cells sometimes interact with a surface (such as the wall of a blood vessel) by rolling along it. In the new device, a surface is coated with lines of a material that interacts with the cells, making it seem sticky to specific types of cells. The sticky lines are oriented diagonally to the flow of cell-containing fluid passing over the surface, so as certain kinds of cells respond to the coating they are nudged to one side, allowing them to be separated out.

Cancer cells, for example, can be separated from normal cells by this method, which could ultimately lead to a simple device for cancer screening. Stem cells also exhibit the same kind of selective response, so such devices could eventually be used in research labs to concentrate these cells for further study.

Normally, it takes an array of lab equipment and several separate steps to achieve this kind of separation of cells. This can make such methods impractical for widespread screening of blood samples in the field, especially in remote areas. “Our system is tailor-made for analysis of blood,” Karnik says. In addition, some kinds of cells, including stem cells, are very sensitive to external conditions, so this system could allow them to be concentrated with much less damage than with conventional multi-stage lab techniques.

“If you're out in the field and you want to diagnose something, you don't want to have to do several steps,” Karnik says. With the new system, “you can sort cells in a very simple way, without processing.”

Now that the basic principle has been harnessed in the lab, Karnik estimates it may take up to two years to develop into a standard device that could be used for laboratory research purposes. Because of the need for extensive testing, development of a device for clinical use could take about five years, he estimates.

The work was a collaboration between Karnik and six other
researchers: MIT Institute Professor Robert Langer, Jeffrey Karp of the Harvard-MIT Division of Health Sciences and Technology, Seungpyo Hong, Ying Mei and Huanan Zhang of MIT's Department of Chemical Engineering, and Daniel Anderson of the Center for Cancer Research.

The work was funded by a grant from the National Institutes of Health.

Written by David Chandler, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>