Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a 'roll': MIT researchers devise new cell-sorting system

07.03.2008
Process could yield low-cost tool for diagnosing cancer, other diseases

Capitalizing on a cell's ability to roll along a surface, MIT researchers have developed a simple, inexpensive system to sort different kinds of cells - a process that could result in low- cost tools to test for diseases such as cancer, even in remote locations.

Rohit Karnik, an MIT assistant professor of mechanical engineering and lead author of a paper on the new finding appearing this week in the journal Nano Letters, said the cell-sorting method was minimally invasive and highly innovative.

“It's a new discovery,” Karnik said. “Nobody has ever done anything like this before.”

The method relies on the way cells sometimes interact with a surface (such as the wall of a blood vessel) by rolling along it. In the new device, a surface is coated with lines of a material that interacts with the cells, making it seem sticky to specific types of cells. The sticky lines are oriented diagonally to the flow of cell-containing fluid passing over the surface, so as certain kinds of cells respond to the coating they are nudged to one side, allowing them to be separated out.

Cancer cells, for example, can be separated from normal cells by this method, which could ultimately lead to a simple device for cancer screening. Stem cells also exhibit the same kind of selective response, so such devices could eventually be used in research labs to concentrate these cells for further study.

Normally, it takes an array of lab equipment and several separate steps to achieve this kind of separation of cells. This can make such methods impractical for widespread screening of blood samples in the field, especially in remote areas. “Our system is tailor-made for analysis of blood,” Karnik says. In addition, some kinds of cells, including stem cells, are very sensitive to external conditions, so this system could allow them to be concentrated with much less damage than with conventional multi-stage lab techniques.

“If you're out in the field and you want to diagnose something, you don't want to have to do several steps,” Karnik says. With the new system, “you can sort cells in a very simple way, without processing.”

Now that the basic principle has been harnessed in the lab, Karnik estimates it may take up to two years to develop into a standard device that could be used for laboratory research purposes. Because of the need for extensive testing, development of a device for clinical use could take about five years, he estimates.

The work was a collaboration between Karnik and six other
researchers: MIT Institute Professor Robert Langer, Jeffrey Karp of the Harvard-MIT Division of Health Sciences and Technology, Seungpyo Hong, Ying Mei and Huanan Zhang of MIT's Department of Chemical Engineering, and Daniel Anderson of the Center for Cancer Research.

The work was funded by a grant from the National Institutes of Health.

Written by David Chandler, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>