Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU Grants European Project for the Early Detection of Adverse Drugs Events

06.03.2008
Before launching a new drug to the market, it is tested on thousands of people, but adverse reactions (side effects) may not be detected until many more patients have used the drug. Once the drug is on the market, clinicians are responsible for recognizing and reporting suspected side effects, which are collected in so-called spontaneous reporting systems. However, a number of recent, highly publicized drug safety issues showed that adverse effects of drugs may be detected too late, when millions of patients have already been exposed.

The recently approved ALERT project aims to develop an innovative computerized system to detect adverse drug reactions (ADRs) better and faster than spontaneous reporting systems. To achieve this objective, ALERT will exploit clinical data from electronic healthcare records (EHRs) of over 30 million patients from several European countries (The Netherlands, Denmark, United Kingdom, Spain and Italy).

ALERT will use a variety of text mining, epidemiological and other computational techniques to analyze the EHRs in order to detect ‘signals’ (combinations of drugs and suspected adverse events that warrant further investigation).

In ALERT, special emphasis will be placed on the detection of ADRs in children. EHRs from the collaborating European countries all include data on the paediatric population. For children, monitoring of adverse events is especially mandated because relatively little is known about ADRs in children. ALERT will therefore pay particular attention to the additional requirements posed by the paediatric population.

One of the major research issues in ALERT is to discriminate between signals that indeed point to an ADR, and spurious signals. Spurious signals may create unrest and uncertainty in both patients and physicians and may even result in removal of a useful drug from the market. Also from a commercial and regulatory perspective the cost of a false-positive signal is significant.

To discriminate between true signals and spurious signals, in ALERT a possible biological explanation is sought for each signal. This process of signal substantiation requires that the signal be placed in the context of our current understanding of possible biological mechanisms. ALERT will use to the maximum the currently available databases that contain information about these biological mechanisms and augment that understanding with in silico models and simulations of the behaviour of drug and biological systems. ALERT will also rely on experimental screening to test the causal hypothesis generated during the substantiation of signals.

Monitoring of EHRs to detect signals and the subsequent mechanistic substantiation of these signals is a continuous process. As more patient data become available and medical, biological and molecular knowledge expands, previous conclusions will need to be revisited. In order to deal with this constant process of revision, ALERT will focus on automated procedures as much as possible.

ALERT will be carried out by an interdisciplinary team of researchers who share the ultimate objective to demonstrate that an earlier detection of adverse side effects of drugs is possible by using modern biomedical informatics technologies to efficiently exploit both the massive amounts of available EHRs, and the ever-increasing biological and molecular knowledge. The project should demonstrate that scientific and clinical evidence can quickly and directly be translated into patient safety and, thus, health benefit.

The ALERT project (full title: “Early Detection of Adverse Drug Events by Integrative Mining of Clinical Records and Biomedical Knowledge”) is funded with 4.5 million Euro granted by the European Commission in the recently initiated 7th Framework Programme. ALERT will be coordinated by Professor dr. Johan van der Lei of Erasmus University Medical Center (Netherlands), and carried out by a consortium of 18 leading European research institutions.

Nathalie Villahoz | alfa
Further information:
http://www.imim.es

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>