Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain chemistry ties anxiety and alcoholism

05.03.2008
Doctors may one day be able to control alcohol addiction by manipulating the molecular events in the brain that underlie anxiety associated with alcohol withdrawal, researchers at the University of Illinois at Chicago College of Medicine and the Jesse Brown VA Medical Center report in the March 5 issue of the Journal of Neuroscience.

"The association of anxiety with increased alcohol use is a key factor in the initiation and maintenance of alcohol addition," says Dr. Subhash Pandey, UIC professor of psychiatry and director of neuroscience alcoholism research, the lead author of the study.

Previous research has shown that people with inherently high levels of anxiety are at an increased risk of becoming alcoholics. In addition, withdrawal of alcohol in chronic users is often accompanied by extreme anxiety.

"Alcoholics may feel a need to continue to drink alcohol in an attempt to self-medicate to reduce their anxiety and other unpleasant withdrawal symptoms," said Pandey.

Pandey and his colleagues have discovered the molecular basis for the link between anxiety and alcohol addiction, which may help in identifying new therapeutic strategies for the treatment of alcohol addiction.

The researchers found that a protein within neurons in the amygdala -- the area of the brain associated with emotion and anxiety -- controls the development of alcohol withdrawal symptoms and drinking behaviors in laboratory animals by changing the shape of the neurons. This change in shape affects the communication between neurons, leading to changes in behavior.

Neurons communicate by sending signals through branches called dendritic spines. The researchers found that short-term alcohol exposure increased the number of dendritic spines in certain regions of the amygdala, producing anti-anxiety effects. Alcohol-dependent animals eventually developed a tolerance to the anxiety-lowering effects of alcohol.

The researchers traced the anti-anxiety effect to the production of a particular protein, Arc, in response to a nerve growth factor called BDNF that is stimulated by alcohol exposure. BDNF is vital in the functioning and maintenance of neurons.

When alcohol was withheld from animals that had been chronically exposed, they developed high anxiety. Levels of BDNF and Arc -- and the number of dendritic spines -- were decreased in the amygdala. But the researchers were able to eliminate the anxiety in the alcohol-dependent animals by restoring BDNF and Arc to normal levels.

Pandey suggested that an initial easing of anxiety may encourage people to begin to use alcohol, while for chronic users, a lack of alcohol provokes high anxiety, creating a need to continue drinking to feel normal.

The researchers blocked Arc production in normal rats by injecting a complementary sequence to Arc gene DNA into the central amygdala. They found that when levels of Arc in the central amygdala were lowered, the spines decreased and anxiety and alcohol consumption increased. When levels of Arc were returned to normal three days post-injection, anxiety and alcohol consumption also returned to normal. In a previous study, researchers found that lowering BDNF in amygdala promoted anxiety and alcohol drinking.

"This is the first direct evidence of the molecular processes occurring in the neurons that is responsible for the co-morbidity of anxiety and alcoholism, which we believe plays a major role in the addictive nature of alcohol," said Pandey.

"This offers the possibility of new therapeutic target -- BDNF-Arc signaling and associated dendritic spines in the amygdala -- or new drug development."

"These observations by Dr. Pandey's research group provide an insight into the link between alcohol and anxiety and could be used to identify new targets for developing medications that alleviate withdrawal-induced anxiety and potentially modify a motivation for drinking," said Antonio Noronha, director of neuroscience and behavior research at the National Institute on Alcohol Abuse and Alcoholism.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>