Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomedicine system engineered to enhance therapeutic effects of injectable drugs

04.03.2008
In an article featured on the cover of the March issue of “Nature Nanotechnology,” Mauro Ferrari, Ph.D., of The University of Texas Health Science Center at Houston presented a proof-of-concept study on a new multistage delivery system (MDS) for imaging and therapeutic applications.

This discovery could go a long way toward making injectable drugs more effective. The study is included in the March 2 Advance Online Publication on “Nature Nanotechnology’s” Web site (http://www.nature.com/nnano/index.html)

“This is next generation nanomedicine,” said Ferrari, the senior author. “Now, we’re engineering sophisticated nanostructures to elude the body’s natural defenses, locate tumors and other diseased cells, and release a payload of therapeutics, contrasting agents, or both over a controlled period. It’s the difference between riding a bicycle and a motorcycle.”

The study - “Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications” - was conducted with researchers from The University of Texas M. D. Anderson Cancer Center and Rice University.

Nanotechnology offers new and powerful tools to design and to engineer novel drug delivery systems and to predict how they will work once inside the body. “The field of therapeutic nanoparticles began with tiny drug-encapsulated fat bubbles called liposomes, now commonly used in cancer clinics worldwide. Targeting molecules were later added to liposomes and other nanovectors to assist in directing them to diseased cells,” Ferrari said.

Getting intravenous agents to their intended targets is no easy task. It’s estimated that approximately one of every 100,000 molecules of agent reaches its desired destination. Physicians are faced with the quandary of increasing the dosage, which can lead to side effects or reducing the dosage, which can limit the therapeutic benefits.

The multistage approach, according to Ferrari, is needed to circumvent the body’s natural defenses or biobarriers, which act as obstacles to foreign objects injected in the blood stream. “To overcome this problem, we hypothesized and developed a multifunctional MDS comprising stage 1 mesoporous particles loaded with one or more types of stage 2 nanoparticles, which can in turn carry either active agents or higher-stage particles. We have demonstrated the loading, controlled release and simultaneous in vitro delivery of quantum-dots and carbon nanotubes to human vascular cells,” the authors write.

In addition to circumventing biobarriers, Ferrari’s team is working on the biochemical modifications required to efficiently deliver the MDS to a specific cancer lesion. “We have preliminary data that show that we can localize a payload of diagnostic agents, therapeutic agents or combination of both to target cells. Once on site, the molecules can be released in a controlled way and then the MDS will degrade in 24 to 48 hours, be transformed into orthosilicic acid and leave no trace in the body,” Ferrari said.

Lead author Ennio Tasciotti, Ph.D., senior postdoctoral fellow in the NanoMedicine Research Center at the UT Health Science Center at Houston, said the proof-of-concept study would have not been possible without a multidisciplinary effort including contributions from mathematicians, physicists, engineers, chemists and biologists.

“We are dealing with objects that are in the billionth of a meter size range and to study such objects we used cutting edge technologies,” Tasciotti said. “The characterization of the particles was performed using scanning electron and atomic force microscopy, dynamic light scattering, fluorimetry and flow cytometry. The interaction of particles with cells was studied using fluorescence and confocal microscopy as well as a series of assays intended to determine cell viability and internalization rate of the nanoparticles.”

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Health and Medicine:

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

nachricht Progress in the treatment of aggressive brain tumors
18.02.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>