Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tighter tummies: a new way to combat weight gain

04.03.2008
Two cell proteins that relax the gut and help accommodate a big meal have been identified by UCL (University College London) scientists. The proteins could offer a future drug target against weight gain, by preventing the stomach from expanding.

In a paper published in this month’s issue of the Journal of Pharmacology and Experimental Therapeutics, Dr Brian King and Dr Andrea Townsend-Nicholson explored the molecular basis of relaxations of the gut.

In the study, the authors identified two protein receptors – P2Y1 and P2Y11 – involved in fast and slow relaxations of the gut. These proteins were identified in the guinea pig, but are also present in the human gut, and thus offer the potential as a future target for drug treatment. Further research by the UCL team will focus on the human isoform of the P2Y11 protein receptor.

Dr Brian King of the UCL Department of Neuroscience, Physiology and Pharmacology says: “The mechanisms we have identified are important to the normal workings of the stomach - a hollow organ which actively relaxes to help accommodate the size of your meal. The human stomach has a ‘resting’ internal volume of 75 millilitres but, by relaxing its muscular wall, can expand to an internal volume of two litres or more - a 25-fold increase in the volume it can accept. This expansion is controlled by nerves inside the stomach wall and these nerves release molecules that stimulate the P2Y1 and P2Y11 receptor proteins embedded in muscle cells in the gut wall.

“The mechanism of slow relaxation of the stomach might represent a future drug target in the fight to control weight gain and reverse obesity. We are looking to identify drugs that would block the P2Y11 receptor and, therefore, prevent slow relaxation of the stomach. As a result of blocking the P2Y11-based mechanism, meal size would be smaller, offering the person a better chance of regulating their food intake.

“This would be a brand new approach to weight control. At present, the most successful way to help obese patients lose weight is gastric banding or stomach stapling, both of which reduce the maximum volume of the stomach. But these are also tricky surgical procedures, not without attendant risks. A pill that could replace this surgery, yet have the same effect, might be a useful alternative.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>