Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism's origins: Mother's antibody production may affect fetal brain

27.02.2008
The mothers of some autistic children may have made antibodies against their fetuses’ brain tissue during pregnancy that crossed the placenta and caused changes that led to autism, suggests research led by Johns Hopkins Children’s Center investigators and published in the February issue of the Journal of Neuroimmunology.

The causes of autism, a disorder manifesting itself with a range of brain problems and marked by impaired social interactions, communication disorders and repetitive behaviors, remain unknown for an estimated 90 percent of children diagnosed with it. Genetic, metabolic and environmental factors have been implicated in various studies of autism, a disorder affecting 1 in 150 U.S. children, according to estimates by the Centers for Disease Control and Prevention.

“Now our research suggests that the mother’s immune system may be yet another factor or a trigger in those already predisposed,” says lead investigator Harvey Singer, M.D., director of pediatric neurology at Hopkins Children’s.

Researchers caution that the findings needn’t be cause for alarm, but should be viewed instead as a step forward in untangling the complex nature of autism.

Mostly anecdotal past evidence of immune system involvement has emerged from unusual antibody levels in some autistic children and from postmortem brain tissue studies showing immune abnormalities in areas of the brain. Antibodies are proteins the body makes in response to viruses and bacteria or sometimes mistakenly against its own tissues. Yet, the majority of children with autism have no clinical evidence of autoimmune diseases, which prompted researchers to wonder whether the antibodies transferred from mother to child during pregnancy could interfere with the fetal brain directly.

To test their hypothesis, the research team used a technique called immunoblotting (or Western blot technology), in which antibodies derived from blood samples are exposed to adult and fetal brain tissue to check whether the antibodies recognize and react against specific brain proteins.

Comparing the antibody-brain interaction in samples obtained from 100 mothers of autistic children and 100 mothers of children without autism, researchers found either stronger reactivity or more areas of reactivity between antibodies and brain proteins in about 40 percent of the samples obtained from the mothers of autistic children. Further, the presence of maternal antibodies was associated with so-called developmental regression in children, increasingly immature behaviors that are a hallmark of autism.

While the findings suggest an association between autism and the presence of fetal brain antibodies, the investigators say further studies are needed to confirm that particular antibodies do indeed cross the placenta and cause damage to the fetal brain.

“The mere fact that a pregnant woman has antibodies against the fetal brain doesn’t mean she will have an autistic child,” Singer says. “Autism is a complex condition and one that is likely caused by the interplay of immune, genetic and environmental factors.”

Researchers are also studying the effect of maternal antibodies in pregnant mice. Preliminary results show that the offspring of mice injected with brain antibodies exhibit developmental and social behaviors consistent with autism.

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>