Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgetful mice show the way to treating Alzheimer’s

25.02.2008
RIKEN researchers find link with protein build-up

The accumulation of a phosphate-laden, soluble form of tau protein in an important memory center of ageing mice is associated with loss of nerve cell connections or synapses and deterioration of memory, RIKEN researchers have found. Not only does this constitute the first sign of the onset of Alzheimer’s disease (AD), they suggest, but reduction or prevention of the build-up of such hyperphosphorylated tau may well lead to an effective treatment.

Two consistent biochemical hallmarks of AD in the brain are the presence of deposits of misfolded proteins known as amyloid beta plaques and insoluble aggregates of hyperphosphorylated tau proteins inside nerve cells called neurofibrillary tangles (NFT). Tau proteins help stabilize the internal skeleton of cells by interacting with microtubules. They are regulated by phosphates that can attach at various points along the molecule. Both NFTs and amyloid beta plaques form well before the onset of AD, and the role they play has been the subject of intense scrutiny.

In a recent paper in The EMBO Journal (1), researchers from RIKEN’s Brain Science Institute in Wako detail their work using transgenic mice to which a gene for human tau protein had been added together with a promoter to stimulate its activity in the nerve cells of the forebrain after birth. The researchers found that the human tau protein became hyperphosphorylated as the mice aged, but did not form NFTs. There was also no evidence of nerve cell loss.

Using the Morris water maze, whereby mice learn the position of a submerged escape platform in a tank of water by remembering cues to its position, the researchers determined that the transgenic mice also displayed impaired learning ability as they grew older compared with normal mice (Fig. 1). And with manganese-enhanced MRI imaging, a new technique for analyzing brain activity in small animals, they were able to match this with reduced activity and fewer synapses in the entorhinal cortex of the brain, critical to spatial memory. All of this occurred without NFT formation and before any possible appearance of amyloid beta plaques.

“Once NFTs form, we cannot rescue the nerve cells,” says research team spokesman, Akihiko Takashima. “But before the formation of NFTs, tau proteins form small soluble aggregates, and we know of several enzymes that can inhibit this. So we are now trying to detect the aggregates by means of the small compounds which bind to them or through positron emission tomography.”

Reference

1. Kimura, T., Yamashita, S., Fukuda, T., Park, J-M., Murayama, M., Mizoroki, T., Yoshiike, Y., Sahara, N. & Takashima, A. Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. The EMBO Journal 26, 5143–5152 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>