Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siblings of schizophrenia patients display subtle shape abnormalities in brain

21.02.2008
Subtle malformations in the brains of patients with schizophrenia also tend to occur in their healthy siblings, according to investigators at the Silvio Conte Center for the Neuroscience of Mental Disorders at Washington University School of Medicine in St. Louis. Shape abnormalities were found in the brain's thalamus.

The researchers performed brain MRI scans in 25 patients with schizophrenia and their non-affected siblings and compared the scans with those of 40 healthy volunteers and their siblings. Comparisons were possible through a process that converts images into three-dimensional models of brain anatomy, called high-dimensional brain mapping. The technique allows scientists to detect tiny differences in brain anatomy.

"We're interested in the thalamus because it has a lot of connections to the prefrontal cortex," says Michael P. Harms, Ph.D., senior scientist at the Conte Center. " In addition to psychosis, schizophrenia is characterized by other difficulties, such as issues with working memory and decreased cognitive performance. Those symptoms are believed to involve the cortex, and since the thalamus projects throughout the cortex, it's conceivable abnormalities in the thalamus may be related to those symptoms."

Since individuals with schizophrenia and their healthy siblings showed evidence of the same shape abnormalities in the thalamus, the researchers want to look more closely to determine whether these deformations may represent biological markers of disease risk.

"We devised a mathematical approach and developed a shape score based on the differences in shape that we observed between those with schizophrenia and the healthy control subjects," Harms explains. "Then we computed shape scores for the siblings of the schizophrenia patients. Their scores landed between the scores of the controls and the individuals with schizophrenia. The siblings had an intermediate degree of deformation in the thalamus."

The thalamus relays information from every sensory system but smell to the cortex, and it connects to diverse structures throughout the brain. The walnut-sized thalamus is made up of several distinct sub-regions, and the researchers found that compared to control subjects, the front and back ends of the thalamus were deformed inward in those with schizophrenia. The same deformations were present, but less pronounced, in the siblings of schizophrenia patients.

About 1 percent of the general population suffers from schizophrenia. Even after the initial symptoms of psychosis are treated with medication and psychotherapy, patients can relapse. And with each relapse, the patient's condition can get worse. Even the best possible outcome — no future relapses of psychotic symptoms — still requires patients to take antipsychotic medications for the rest of their lives.

"Early diagnosis and intervention with the most effective antipsychotic medications and psychotherapies may offer the best hope for patients with schizophrenia and their families." says co-investigator John G. Csernansky, M.D., the Gregory B. Couch Professor of Psychiatry and Neurobiology at the School of Medicine and director of the Conte Center. "This type of brain-structure analysis eventually may make it possible to start treatment for schizophrenia more quickly, perhaps even before full-blown psychotic symptoms, such as hallucinations and delusions, occur."

Harms and Csernansky say it's possible that shape changes in the thalamus may represent a biological marker for schizophrenia, called an endophenotype, but they can't be sure until these structural changes can be linked to the symptoms of the illness. Some of those studies are underway now. The current study was published in the Dec. 12 issue of The Journal of Neuroscience.

Harms MP, Wang L, Mamah D, Barch DM, Thompson PA, Csernansky JG. Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. The Journal of Neuroscience, vol. 27 (50), pp.13835-13842, Dec. 12, 2007. DOI:10.1523/JNEUROSCI.2571-07.2007

This research was supported by grants from the National Institutes of Health.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>