Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A researcher of the University of Navarra has discovered new compounds with potential anti-depressant activity

20.02.2008
Luis Berrade, a researcher with the Drug R&D Unit of the University of Navarra, has discovered new compounds with the potential for anti-depressant activity.

All told, the chemist of the School of Sciences synthesized 51 compounds whose biological characteristics were evaluated by two of the most prestigious groups in this area: the Mediterranean Institute of Neurobiology, located in Italy, and the Department of Pharmacology of the University of Oslo.

The results obtained formed part of his doctoral dissertation, entitled “Design, synthesis and preliminary biological evaluation of new derivatives of benzo[b]-thiophene in the Search for Agents for a New Anti-Depressant Therapy.”

As the researcher explained, the new molecules which he designed affect two brain targets which are considered to be keys in the development of processes of depression. One of these is the serotonin transporter, whose reuptake reduction has already been shown to improve mood; the other is the serotoninergic receptor 5-HT7, a therapeutic target for serotonin whose modulation can provoke anti-depressant effects.

Trials in vivo

In order to study these two key targets, Luis Berrade developed chemical structures via the fusion of two similar chemical compounds: the benzo[b]-thiophene ring and arilamine. Following this, he compared the new compounds with a drug currently on the market, Fluoxetine. As a result of this research, he explained, we discovered that nine of these compounds demonstrated greater affinity, in this sense, than the commercial drug. As a consequence of this discovery, in January in vivo trials were begun in order to test their anti-depressant activity in mice.

This study, one of the first in the world in this specialty, was undertaken in collaboration with the Department of Pharmacology of the University of Navarra. Among its objectives was discovering whether these new compounds could reduce the minimum time required for anti-depressant drugs to ameliorate the symptoms of the disease: Currently, the time for an antidepressant to take effect is from three to six weeks, and this is an important factor in patient refusal to continue with these treatments; as a result it is very important to shorten the time required for the positive effects to appear.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1641&hizk=I

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>