Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New sensor system improves detection of lead, heavy metals

14.02.2008
PNNL develops inexpensive portable detection system for rapid, accurate analysis of toxic metals

The Department of Energy's Pacific Northwest National Laboratory has developed a new rapid, portable and inexpensive detection system that identifies personal exposures to toxic lead and other dangerous heavy metals. The device can provide an accurate blood sample measurement from a simple finger prick, which is particularly important when sampling children.

PNNL's portable analyzer system accurately detects lead and other toxic metals in blood as well as in urine and saliva. Results are as reliable as those of current state-of-the-art mass spectrometry systems many times its size. This new system provides a quicker, simpler and easier method of monitoring toxic metal exposures in high-risk populations, such as industrial workers, children and people living in polluted areas.

A bit larger than a lunchbox, the new detection system is field-deployable with plug-and-play features that allow different sensors to be easily exchanged to detect a variety of heavy metal toxins. The entire system is battery-operated and requires about one and one-half times the power of a typical laptop computer. The system also routinely delivers reliable measurements within a rapid two-to-five minute analysis period.

Early production cost estimates indicate that the device may be as much as 10 times less expensive than existing plasma mass spectrometry systems, which lack field portability and require samples to be returned to the lab for time-consuming and more expensive analysis.

Accumulation of lead in children can harm the developing brain, causing reduced IQ, learning disabilities and behavioral problems, among other things. The Centers for Disease Control and Prevention report that about 310,000 U.S. children ages 1 to 5 have high levels of lead in their blood. Recent studies also indicate a link between lead exposure and a decline in mental ability many years later.

Recent attention to children's exposure to lead from toys and products from the Far East has heightened the interest in toxic exposures to heavy metals. The ability to quickly and accurately identify children with elevated blood lead levels is important in providing treatment to those who need it. In addition, large numbers of industrial workers may be routinely exposed to toxic heavy metals like cadmium, lead and mercury, which are known to induce various diseases.

"We need next-generation analyzers to reduce the time and lower the costs of analysis for clinical diagnosis," said PNNL scientist and principal investigator Wassana Yantasee. "They will help us better understand the relationship between the exposure to these toxins and how the body responds, which will help in developing new strategies to reduce exposures and risks."

"Our research has focused on optimizing the sensor systems to work with the biological complexities in blood, urine and saliva samples," said Yantasee. "Validation of these sensor platforms for use in biomonitoring is particularly important in developing a personalized exposure assessment strategy."

The device can use two classes of sensors for detecting lead and other heavy metals. The first is based on a flow injection system using a mercury-film electrode to analyze metals in blood, urine or saliva samples.

To eliminate the use of toxic mercury in conducting the analysis, the second class of the sensor uses a mercury-free approach of nanostructure materials developed at PNNL. This involves use of either Self-Assembled Monolayers on Mesoporous Supports - SAMMS™ technology - or functionalized magnetic nanoparticles that provide excellent detection sensitivity at a parts-per-billion level.

PNNL's research is supported by extramural grants from the CDC's National Institute of Occupational Safety and Health, and the National Institutes of Health's National Institute of Environmental Health Sciences.

Battelle, which operates PNNL for DOE, filed a patent application in December 2007 for the improved sensor technology used in this next-generation biomonitoring device. Battelle is seeking commercialization partners and welcomes companies interested in the technology to contact Commercialization Manager Bruce Harrer or access Portable Electrochemical Sensing System for more information.

Geoffrey Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>