Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A natural compound extracted from olive inhibits cancer cells growth and prevents their appearance

14.02.2008
A research group of the University of Granada has found out that maslinic acid, a compound present in the leaf and the olive skin wax extracted from alpeorujo (crushed olive pulp), has the capacity of preventing cancer as well as regulating apoptosis in carcinogenic processes.

Maslinic acid is a protease inhibitor that, among other features, has the capacity of regulating cell growth. It is useful for cancer treatment, as it allows to control the hyperplasia and hypertrophy processes, typical of this disease. The scientists of the UGR have characterized for the first time maslinic acid action from the molecular point of view when it is applied to the development of tumour cells.

This work has been carried out by Ph D student Fernando Jesús Reyes Zurita, and directed by Professor José Antonio Lupiáñez Cara, of the department of Biochemistry and Molecular Biology I. According to them, the advantages of maslinic acid are three: Unlike other anti-carcinogenic products, highly cytotoxic, it is a natural compound and, therefore, less toxic. In addition, it is selective, this is, it only acts on carcinogenic cells, whose pH is more acid than usual. And lastly, it has a preventive nature, as it can inhibit cancer appearance in those cells with a higher predisposition to develop it.

For all types of cancer

Although the research group of Professor Lupiáñez Cara has analysed the effect of maslinic acid in the treatment of colon cancer, it can be used in different types of tumours. For the moment, their research works have been developed in colon carcinoma lines and transgenic mice, but they have not dismissed the possibility of applying them to humans in future.

Maslinic acid is a pentacyclic terpene which, besides being anti-carcinogenic, it has anti-inflammatory and antioxidant effects and can be found in high concentrations in olive skin wax. At present, the only production plant of this substance at a semi-industrial level in the whole world is at the Faculty of Sciences of the University of Granada.

Antonio Marín Ruiz | alfa
Further information:
http://prensa.ugr.es/prensa/research/verNota/prensa.php?nota=513

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>