Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe’s most common genetic disease is a liver disorder

06.02.2008
Researchers discover the origin of hereditary hemochromatosis, a common iron overload disorder, is a genetic defect in the liver

Much less widely known than the dangerous consequences of iron deficiencies is the fact that too much iron can also cause problems. The exact origin of the genetic iron overload disorder hereditary hemochromatosis (HH) has remained elusive.

In a joint effort, researchers from the European Molecular Biology Laboratory (EMBL) and the University of Heidelberg, Germany, have now discovered that HH is a liver disease. They report in the current issue of Cell Metabolism that the disorder develops when a crucial gene is lacking in liver cells.

Iron is essential for our body, because it is a central component of red blood cells. Too little iron can lead to dangerous anemias, but also too much iron can be detrimental as it promotes the formation of toxic radicals that lead to tissue damage. Hereditary hemochromatosis is an iron overload disorder that, affecting about one in 300 people, is probably the most common genetic disorder in Europe. Scientists have identified a gene, called HFE, that when mutated causes hemochromatosis in mice and humans. But as yet it is unknown in which tissue or organ the gene is acting to prevent iron overload.

A group of researchers around Matthias Hentze at EMBL and Martina Muckenthaler and Wolfgang Stremmel at the University of Heidelberg have now found that mice that are genetically engineered to lack HFE only in liver cells show all central features of the disease.

“For a long time scientists thought of HH as a disease of the intestine, because this is where iron uptake actually takes place,” says Matthias Hentze, Associate Director of EMBL. “Our research now reveals the crucial point is actually the liver and explains why HH patients suffer from increased iron absorption.”

HFE encodes a protein that is likely involved in transmitting signals about the current iron contents of the body to liver cells. In response to these signals, the liver cells make a special iron hormone, hepcidin that is released into the blood stream and reduces iron uptake in the intestine.

“HFE influences hepcidin expression through a series of intermediate molecules, but when the HFE gene is mutated the result is that less hepcidin is produced. This in turn means iron uptake in the intestine cannot be limited as effectively and an overload develops,” says Martina Muckenthaler, professor at the University of Heidelberg.

The research is a landmark for the joint Molecular Medicine Partnership Unit of EMBL and the University of Heidelberg. The Unit is dedicated to elucidating the molecular mechanisms of a range of different diseases, among which disorders of iron metabolism constitute a central focus.

Published in the 05 February, 2008 issue of Cell Metabolism.

Anna-Lynn Wegener
Press Officer
EMBL
Meyerhofstrasse 1
D-69117 Heidelberg
tel. +49-6221-3878452
fax +49-6221-387525
wegener@embl.de

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org
http://www.embl.org/aboutus/news/press/2008/05feb08/index.html

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>