Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting astrocytes slows disease progression in ALS

05.02.2008
In what the researchers say could be promising news in the quest to find a therapy to slow the progression of amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, scientists at the University of California, San Diego (UCSD) School of Medicine have shown that targeting neuronal support cells called astrocytes sharply slows disease progression in mice.

The study, conducted in the laboratory of Don Cleveland, Ph.D., UCSD Professor of Medicine, Neurosciences and Cellular and Molecular Medicine and member of the Ludwig Institute for Cancer Research, will appear in the advance online publication on Nature Neuroscience's website on February 3rd.

“Mutant genes that cause ALS are expressed widely, not just in the motor neurons,” Cleveland explained. “Targeting the partner cells like astrocytes, which live in a synergistic environment with the neuron cells, helps stop the ‘cascade of damage.’ Therapeutically, this is the big news.”

ALS is a progressive disease that attacks the motor neurons, long and complex nerve cells that reach from the brain to the spinal cord and from the spinal cord to the muscles throughout the body, which act to control voluntary movement. Degeneration of the motor neurons in ALS leads to progressive loss of muscle control, paralysis and untimely death. Estimated to affect some 30,000 Americans, most people are diagnosed with ALS between the ages of 45 and 65. Typically, ALS patients live only one to five years after initial diagnosis.

In findings published in Science in June 2006, Cleveland and his colleagues showed that in early stages of inherited ALS, small immune cells called microglia are damaged by mutations in the SOD1 protein, and that these immune cells then act to significantly accelerate the degeneration of the motor neurons. The new study demonstrates that much the same thing happens to astrocytes, support cells that are essential to neuronal function, and whose dysfunction is implicated in many diseases. The researchers speculate that the non-neuronal cells play a vital role in nourishing the motor neurons and in scavenging toxins from the cellular environment. As with microglia, the helper role of astrocytes is altered due to mutations in the SOD1 protein.

“We tested what would happen if we removed the mutant gene from astrocytes in mouse models,” said Cleveland. “What happened was it doubled the lifespan of the mouse after the onset of ALS.”

Astrocytes are key components in balancing the neurotransmitter signals that neurons use to communicate. To examine whether mutant SOD1 damage to the astrocytes contributes to disease progression in ALS, researchers in the Cleveland lab used a genetic trick to excise the mutant SOD1 gene, but only in astrocytes. Reduction of the disease-causing mutant SOD1 in astrocytes did not slow disease onset or early disease; however, the late stage of the disease was extended, nearly doubling the normal life expectancy of a mouse with ALS.

“Silencing the mutant gene in the astrocytes not only helps protect the motor neuron, but delays activation of mutant microglia that act to accelerate the progression of ALS,” said Cleveland.

The findings show that mutant astrocytes are likely to be viable targets to slow the rate of disease spread and extend the life of patients with ALS. Cleveland added that this may prove especially important news to researchers in California and elsewhere working with stem cells. “This gives scientists a good idea of what cells should be replaced using stem cell therapy. Astrocytes are very likely much easier to replace than the slow-growing motor neuron.”

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>