Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Art and medicine meet to make the world’s first ‘operation’ gown

30.01.2008
Medical students will be helped to understand what it is like to go under the knife thanks to a world-first project that brings together art and science.

A unique surgical gown, which goes on international display in the USA today, should significantly improve understanding of where operation incisions are made, and what they mean to the patient, say its developers at Durham and Ulster Universities.

It is hoped the gown, which would be worn by medical students in the classroom, will supplement the traditional plastic models of the human body that are currently in global use as teaching aids. It will also help in explaining procedures to patients, according to the scientists.

The gown has nine zips showing where surgeons make cuts in the body for various operations such as removal of the appendix and open heart surgery and its silk material is more like human tissue than the plastic of the traditional models. Medical students will wear the gown in the classroom whilst fellow students learn about surgical incisions using the zips. It will lead to a greater understanding of what it means to be the patient, say the developers.

Researchers say it will contribute to an improvement in teaching aids currently available. They say that, although the traditional plastic models can be used to show areas of the body and where incisions will roughly be made, they are not able to give medical students a sense of the feeling if they were the patient or show them the type of texture they will find once they have made an incision.

Leading medical developer Professor John McLachlan, Associate Dean in Durham University’s School for Health, explains: “Current anatomical teaching aids describe but they don’t evoke. They take no account of emotional involvement or the feel of the body. The way medical students distance themselves emotionally from the patient’s body has long been seen as a desirable outcome of current modes of medical training.

“But this ‘desensitation’ also brings with it the risk of objectifying the body. The patient becomes ‘the liver in bed four’ rather than Mrs Smith. We think we can use art to bring meaning back into medical teaching and we want to help students understand the significance of the body as well as its structure.”

The garment, named ‘Incisions’, was funded by the Wellcome Trust as part of a wider project to explore teaching, learning and thinking about the body through a series of art works and artefacts. ‘Incisions’ has been selected for inclusion in two major international exhibitions with the first one at the Museum of Science in Boston, USA opening today (30 January).

Artistic lead, Karen Fleming, Reader at Ulster University, said: “The body and garments are common objects in art and design but collaboration with medical knowledge brings a new dimension. The challenge for us has been finding material metaphors for living matter that were aesthetically inviting rather than repulsive. We have combined some of the familiar features from hospital gowns with fashion detailing to make it appealing”

The research team aims to feed the use of the gown into medical schools around the UK and beyond. It could form an integral part of the Personal and Professional Development strand of medical training in which students develop the ability to communicate effectively and sensitively with their patients.

Leighton Kitson | alfa
Further information:
http://www.durham.ac.uk/news

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>