Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Nature’ – new findings in pain research published

21.01.2008
A step forward in targeted pain therapy

Our bodies sense painful stimuli through certain receptors located in the skin, in joints and many internal organs. Specialized nerve fibers relay these signals coming from the periphery to the brain, where pain becomes conscious. “The spinal cord is placed between these structures as kind of a pain filter”, says Hanns Ulrich Zeilhofer, Professor at the Institute of Pharmaceutical Sciences at ETH Zurich and at the Institute of Pharmacology and Toxicology of the University of Zurich.

That filter assures that pain is not evoked by everyday stimuli like light touch. This is accomplished by inhibitory nerve cells located in the spinal dorsal horn that release the messenger molecule-amino butyric acid (GABA) at specialized contacts between neighboring nerve cells, so-called synapses. GABA then activates chloride channels on those neighboring cells which relay the pain signals to the brain.

Activating pain inhibiting factors

In patients with chronic inflammatory diseases, such as rheumatoid arthritis or after nerve damage, for example following injuries, the pain inhibiting action of GABA becomes severely compromised. Pain signals are then conducted to the brain nearly unfiltered. Benzodiazepines, such as the sedative drug Valium®, which enhance the action of GABA, alleviate chronic pain when they are applied directly to the spinal cord via an injection into the spinal canal. In practice, however, such injections can only be done in very selected cases. More often benzodiazepines are administered systemically, such as with tablets. In this instance, the benzodiazepines not only act in the spinal cord but also in the brain where they can have undesired, sometimes deleterious, effects on pain patients. The drugs cause sedation, impair memory, and can even lead to addiction. In addition, during prolonged treatment their effect often fades with time. Classic benzodiazepines should therefore be avoided in chronic pain patients.

GABAA receptors as pain targets

It had been acknowledged for some time that GABA serves important functions in pain control. That benzodiazepines act on at least four different subtypes of GABA receptors was also known. Nonetheless, these receptors were largely neglected as potential targets for pain treatment.

The research team led by Ulrich Zeilhofer used genetically altered mice in experiments to target the GABA receptors that control spinal pain relay. They first induced a slight inflammation in one hind paw or irritated the sciatic nerve to induce pain. A few days later the mice received an injection of a benzodiazepine close to the spinal cord. Experiments with the mice allowed the researchers to identify two subtypes of GABAA receptors which mediate spinal pain control.

A challenge for drug design

For experiments with animals, drugs with the proposed receptor specificity are already available. Such experiments have confirmed that the pharmacological enhancement of spinal GABA receptor function inhibits the relay of pain signals to the brain. Further studies have also shown that these compounds did not lose their analgesic effects during prolonged treatment and did not lead to addiction.

Successful design of a drug that targets only those two subtypes of GABA re-ceptors would be a big step forward in pain therapy. Chronic pain could be treated specifically and with fewer side effects. “The challenge is now for pharmaceutical companies to develop drugs that specifically target these receptors in humans”, says Zeilhofer.

Roman Klingler | alfa
Further information:
http://www.cc.ethz.ch/media/picturelibrary/news/gaba

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>