Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The construction of heart modelling leads path to new therapies

10.01.2008
Heart disease is still a major killer, especially in the western world, but new therapies based on stem cells and other techniques could now be imminent. Progress is being held back however by the difficulty testing new therapies on human heart tissue, with animal models being only of limited value owing to differences in structure and activity.

The only solution in the absence of real human models is to create computerised "in-silico" models that simulate the real heart and enable possible drugs and therapies to be tested without risk to people. Although this is still some way off becoming a reality, substantial progress has been made, and the next steps were plotted at a major workshop held recently by the European Science Foundation (ESF).

The workshop highlighted how recent progress in imaging technologies was helping heart modellers overcome the big dilemma they have faced up till now - actually proving that the models really are an accurate representation of the real human heart. This has been the big "catch 22" of heart modelling, that in order to create a realistic model, you need accurate and extensive data from real hearts for calibration.

"Validation of the models is very important, and was raised at the workshop," said Blanca Rodriguez, scientific coordinator of the ESF workshop, and senior cardiac researcher at Oxford University, Europe's leading centre for cardiac modelling. "One of the problems has been that it is much easier to get experimental data from animals than humans."

Such animal data can help calibrate some aspects of the models, but only data from human hearts can fine tune them to the point at which they can actually make useful predictions and test therapies. Fortunately such data is now becoming available as a result of dramatic progress in imaging techniques that can observe cardiac activity externally without need for invasive probes. "We are now getting data at very high resolutions, and that allows us to model things in more detail, with greatly improved anatomy and structure," said Rodriguez. This in turn requires access to greater computational power and more sophisticated software, both of which are available at Oxford.

The models in turn are allowing researchers to study disease and understand what can go wrong, which is the first step towards developing cures. One of the most important diseases being modelled is myocardial ischaemia, which is the loss of blood supply to part of the heart muscle, leading ultimately to failure and potentially death if untreated.

Typically victims of heart failure never fully recover their former health and vigour, because part of the heart muscle has been permanently lost. However stem cell therapy holds the promise of being able to regenerate heart muscle destroyed by disease, but this will require careful testing to eliminate possibly dangerous side effects, such as cancer and disruption of normal heart rhythms, leading to arrhythmia, or irregular heart beats. Here again the heart models could play a vital role. "They could be used to model stem cells' behaviour, and see how they are incorporated into the heart," said Rodriguez.

The ESF workshop also had another dimension - to kick start a Europe-wide effort to catch up with the US in this vital field. Oxford was once the world leader, for remarkably the first cardiac model was developed almost half a century ago in 1961 by Dennis Noble, who although now officially retired is still assisting Rodriguez and colleagues today. Noble's original model was of just of a single heart cell. But since the late 1990s, the models have been extended to the whole organ, incorporating multiple cell types.

The workshop identified three key issues that had to be addressed, according to Rodriguez. The first one was to improve the links within Europe's scattered heart modelling community. The second two recommendations, less specific to Europe, were to create a standard and robust software infrastructure for sharing heart models and associated data, and to define exactly how to calibrate the models more effectively from experimental data.

The next step is to act on these recommendations, but Rodriguez is now confident that Europe is well placed to regain its early momentum in this vital field of medical research.

The ESF Exploratory Workshop on European Heart Modelling and Supporting Technology was held in Oxford, United Kingdom, in May 2007. The Exploratory Workshop titled Exploring Symbolic Value Creation In Organizations was held on 6-9 September 2007 in Milano, Italy. Each year, ESF supports approximately 50 Exploratory Workshops across all scientific domains. These small, interactive group sessions are aimed at opening up new directions in research to explore new fields with a potential impact on developments in science.

Thomas Lau | alfa
Further information:
http://www.esf.org/fileadmin/be_user/ew_docs/06-016_Programme.pdf

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>