Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers hope to provide chronic fatigue syndrome answers

19.12.2007
New kinesiology research hopes to provide definitive test for CFS
One of the most difficult things for people suffering from Chronic Fatigue Syndrome (CFS) is that many believe the condition to be a psychological, not physical affliction.

New research by the Faculty of Kinesiology hopes to measure one of the syndrome’s most obvious symptoms — information that could help doctors in the diagnosis CFS.

“Diagnosis of the syndrome, generally follows eliminating every other possible cause, which leads some to speculate that the condition isn’t real,” says Dr. Brian MacIntosh. “One thing we know is that CFS sufferers feel profound fatigue and worsening of other symptoms following even moderate physical activity. Using our expertise in the field of exercise physiology we believe we can measure this post exertion malaise and say with certainty if an individual has recovered from exercise or if that activity is making them even more fatigued.”

MacIntosh, who is the Faculty of Kinesiology’s Associate Dean of Graduate Studies, is an expert in the area of muscle fatigue. Much of his research has centered on high-performance athletes in peak physical condition, however he says that this research fits in well with his overall area of interest.

“The tools we have developed in high performance sport are perfectly suited to track muscle fatigue in this application so without question we will be able to get some concrete answers,” he says.

The research trial will put CFS patients on a stationary bike to perform a VO2 Max test – similar to trials used to evaluate the fitness level of professional athletes. The individual will pedal to the point of fatigue, at which point researchers will take several measurements including a blood sample in which lactate will be quantified. The next day the patient will return and follow the same workout protocol.

“Most healthy individuals should be able to easily match their performance from the previous day,” MacIntosh explains. “Since CFS patients by definition report profound fatigue from even moderate physical exertion and take greater than 24 hours to recover, we would expect to see a decrease in their physical performance and we should be able to measure that in several ways.”

This work may shed some light on whether the fatigue experienced by people with CFS is primarily in the muscles or in the nervous system. MacIntosh believes that the results of this work could lead to a definitive diagnosis of CFS, giving another tool in the otherwise limited toolbox of diagnostic tests and perhaps, more importantly, shed some light on the broader issue of human muscle fatigue.

“We've all experienced fatigue in our lives," says MacIntosh. "For example when we have the flu or any similar illness, we feel that fatigue makes our arms and legs feel like they’re made of lead... I’m hoping that this research may lead to a greater understanding of human muscle fatigue in general.”

Don McSwiney | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www.kin.ucalgary.ca

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>