Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New improved diagnostic marker for severe blood cancer

13.12.2007
Mantle cell lymphoma is an aggressive form of blood cancer that most commonly afflicts older men. Accurate and early diagnosis is crucial to select an optimal treatment and to increase the chances for survival. A research team at Lund University has now found a novel way to diagnose mantle cell lymphomas (MCL).

The novel approach that will be tested in the routine diagnosis of lymphoma in the Department of Pathology is based on a new biomarker, i.e., a factor that is specific for a certain disease. The discovery is a result of research within CREATE Health, a Center for Translational Cancer Research supported by the Foundation for Strategic Research and the Wallenberg Foundation.

CREATE Health has integrated investigators from the faculties of medicine, engineering, and natural sciences together with clinical oncologists from the university hospital. The overall aim is to identify proteins and genes that can be used as biomarkers for cancer, using emerging advanced technologies. Several very promising projects are under development, but the novel diagnostic approach for MCL has advanced the furthest. Scientist Sara Ek and colleagues have by studying more than 50,000 gene fragments found those that are specifically overexpressed in this disease. She has also identified the corresponding proteins and it is one of these proteins that serves as a specific biomarker.

- In a collaboration with pathologists, we are now studying the biomarker to see if it can be used as a novel routine test for this aggressive blood cancer. In a longer perspective, knowledge about the function of these disease-specific proteins can also lead to novel therapeutic modalities for blood cancer, explains professor Carl Borrebaeck, program director for CREATE Health.

Dr. Michael Dictor, pathologist at Lund University Hospital agrees.
- The biomarker Sox11 has shown to be a very sensitive and specific marker for MCL in addition to providing new information on how the disease might arise.

Ingela Bjoerck | alfa
Further information:
http://www.createhealth.lth.se

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>