Non rejection bioreabsorbable scaffold for jaw implant, developed by Custom-Fit

The Custom-Fit project is a technological research program involving 30 partners from 12 European countries. Its goal is the development a new manufacturing paradigm for producing personalised products, customised to the individual shape of the human body.

This has been done by integrating Scanning Technologies, newly developed CAD systems (Computer Aided Design) and Rapid Manufacturing technologies, the so called ‘additive techniques, which build a object layer by layer, starting from a 3D design, adding material where needed instead of removing it where not.

The mandible implant has been chosen as one of the test benches to try out this new manufacturing technology, together with knee implants, trans-femoral prosthesis, and two consumer goods, motorbike seats and motorbike helmets, products that are well suited to be customised to meet individual body shapes.

The Custom-Fit way to manufacture a mandible implant takes advantage of the best available technologies in design, in material science and in manufacturing, thanks to the member partners of the Custom-Fit consortium.

The process is the following (Image #2). The jaw bone geometry is studied through Computerised Tomography, CT images are then worked using specialised software (Mimics by Materialise) capable of extracting the jaw bone surface in a standard file format for later surface design which uses STL (Standard Triangulation Language). This is capable of distinguishing the damaged part of the bone from the healthy one.

Then, a surface model of the implant, which has to replace the damaged bone part, is easily designed with a CAD system (3-matic, by Materialise in Belgium) that allows the direct playing with facet models (STL-files) avoiding the conversion to CAD-surfaces, which normally requires a long computer processing time; this dramatically shortens the implant design phase. Here, engineers and surgeons work in collaboration to decide were to cut the jaw and consequently the size of the scaffold.

The 3D model of the implant is then completed by adding the internal structure, i.e. adding porosity using more design software called Innerspace that was developed by the Custom-Fit partner, TNO, in the Netherlands.

Finally the model is sliced ready to be manufactured on a special Rapid Manufacturing tool, capable of printing multi-material and porous objects, using high viscosity resins, the Inkjet Printing tool also developed by TNO.

And one of the resins printable by IP is the bioreabsorbable resin developed by DSM, a Dutch company and Custom-Fit partner, that is responsible for new material development. First samples have been successfully printed (Image #3).

It will take years for the new scaffolds to be approved for implantation in human beings, but the approval procedure has now been started, with In-Vitro Cytoxicity tests.

Several advantages will be brought about by bioreabsorbable scaffolds: no rejection of the foreign material, new bone will be able to grow over time (for children), further treatment like dental implants will remain possible and definitively the implant will not be a foreign object any more, but will be completely replaced by new natural bone.

It is a revolution in implant surgery, Custom-Fit made the first step.

Media Contact

Sunny Martínez alfa

More Information:

http://www.custom-fit.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors