Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulatory immune cell diversity tempers autoimmunity in rheumatoid arthritis

09.05.2012
Untangling the root cause of rheumatoid arthritis has been a difficult task for immunologists, as decades of research has pointed to multiple culprits in our immune system, with contradictory lines of evidence.
Now, researchers at The Wistar Institute announce that it takes a diverse array of regulatory T cells (a specialized subset of white blood cells) to prevent the immune system from generating the tissue-specific inflammation that is a hallmark of the disease. Regulatory T cell diversity, the researchers say, provides a cumulative protective effect against rheumatoid arthritis. When that diversity is not present, it allows the immune system to attack joints.

The Wistar scientists presented their findings, developed in a mouse model of rheumatoid arthritis, in the May 1 issue of the Journal of Immunology. Defining the immune mechanisms involved in rheumatoid arthritis could point to new therapies for the disease.

“Our results show, surprisingly, that suppressing the immune response against a single target will not shut down the inflammatory response that causes rheumatoid arthritis,” said Andrew J. Caton, Ph.D., senior author and professor in The Wistar Institute Cancer Center’s Tumor Microenvironment and Metastasis program. “Instead, an array of inflammation-stimulating antigens may be involved in causing the disease, since our study shows that an array of regulatory T cells is required to temper the immune system’s attack on joints.”

Rheumatoid arthritis (RA) is an autoimmune disorder that occurs as the immune system attacks the synovium, the membrane that lines all the joints of the body. It is a common disorder that causes uncontrolled inflammation—resulting in pain and swelling—around the joints. It is thought that approximately one percent of the adult population, worldwide, suffers from rheumatoid arthritis. RA has shown to be exacerbated by drinking and smoking, and the disease can lead to an overall increased risk of death.

While the exact cause of RA is unknown, the Caton laboratory and others have shown that a variety of white blood cells called regulatory T cells (or Tregs) are a necessary component to either restrain (or encourage) the immune system’s inflammatory response. Tregs are activated as molecules on their surface membranes called T cell receptors interact with “friendly” or “self” molecules—a way for the immune system to recognize friend from foe. Mismanagement of these Tregs, which normally serve to restrain the immune system from over-reacting to healthy tissue, could then lead to runaway inflammation.

In this study, the researchers sought to examine how T cell receptors affect the ability of Tregs to suppress arthritis in a mouse that had been bred to express a “self” molecule that drives arthritis. They showed that an array of Tregs given to the mice effectively stops arthritis. Unexpectedly, however, Tregs that are specific for the surrogate “self” molecule do not prevent arthritis.

“We find that the Treg responsible for recognition of the disease-initiating self antigen are sufficient for stopping arthritis, but a diverse repertoire of Tregs are very effective,” Caton said. “All of these Tregs, together, influence other components of the immune system which serves to slow down the inflammatory process that causes RA.”

According to Caton, their findings also point to a possible answer of why the immune system targets the membranes that line joints. Tregs influence other types of T cells to produce a substance known as IL-17, and these cells often travel through the body’s lymphatic system where they then drain out into the joints.

“The big unanswered question of RA is ‘why are joints targeted?’” Caton said. “Of all the tissues in the body, of all the places our immune system could attack, this question remains.”

“One idea is that the immune system isn’t deliberately attacking joints in patients with rheumatoid arthritis,” Caton said, “but the joint inflammation is a side effect of the natural tendency of these cells to accumulate in these areas of the body.”

Funding for this project was provided by the National Institutes of Health’s National Institute for Allergy and Infectious Disease and National Cancer Institute, and a grant from Sibley Memorial Hospital.

The lead author of this study is Soyoung Oh, Ph.D., a postdoctoral fellow in the Caton laboratory, and co-authors include Caton laboratory members Malinda Aitken, Donald M. Simons, Ph.D, Alissa Basehoar, Victoria Garcia, and Elizabeth Kropf.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>