Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regulatory immune cell diversity tempers autoimmunity in rheumatoid arthritis

09.05.2012
Untangling the root cause of rheumatoid arthritis has been a difficult task for immunologists, as decades of research has pointed to multiple culprits in our immune system, with contradictory lines of evidence.
Now, researchers at The Wistar Institute announce that it takes a diverse array of regulatory T cells (a specialized subset of white blood cells) to prevent the immune system from generating the tissue-specific inflammation that is a hallmark of the disease. Regulatory T cell diversity, the researchers say, provides a cumulative protective effect against rheumatoid arthritis. When that diversity is not present, it allows the immune system to attack joints.

The Wistar scientists presented their findings, developed in a mouse model of rheumatoid arthritis, in the May 1 issue of the Journal of Immunology. Defining the immune mechanisms involved in rheumatoid arthritis could point to new therapies for the disease.

“Our results show, surprisingly, that suppressing the immune response against a single target will not shut down the inflammatory response that causes rheumatoid arthritis,” said Andrew J. Caton, Ph.D., senior author and professor in The Wistar Institute Cancer Center’s Tumor Microenvironment and Metastasis program. “Instead, an array of inflammation-stimulating antigens may be involved in causing the disease, since our study shows that an array of regulatory T cells is required to temper the immune system’s attack on joints.”

Rheumatoid arthritis (RA) is an autoimmune disorder that occurs as the immune system attacks the synovium, the membrane that lines all the joints of the body. It is a common disorder that causes uncontrolled inflammation—resulting in pain and swelling—around the joints. It is thought that approximately one percent of the adult population, worldwide, suffers from rheumatoid arthritis. RA has shown to be exacerbated by drinking and smoking, and the disease can lead to an overall increased risk of death.

While the exact cause of RA is unknown, the Caton laboratory and others have shown that a variety of white blood cells called regulatory T cells (or Tregs) are a necessary component to either restrain (or encourage) the immune system’s inflammatory response. Tregs are activated as molecules on their surface membranes called T cell receptors interact with “friendly” or “self” molecules—a way for the immune system to recognize friend from foe. Mismanagement of these Tregs, which normally serve to restrain the immune system from over-reacting to healthy tissue, could then lead to runaway inflammation.

In this study, the researchers sought to examine how T cell receptors affect the ability of Tregs to suppress arthritis in a mouse that had been bred to express a “self” molecule that drives arthritis. They showed that an array of Tregs given to the mice effectively stops arthritis. Unexpectedly, however, Tregs that are specific for the surrogate “self” molecule do not prevent arthritis.

“We find that the Treg responsible for recognition of the disease-initiating self antigen are sufficient for stopping arthritis, but a diverse repertoire of Tregs are very effective,” Caton said. “All of these Tregs, together, influence other components of the immune system which serves to slow down the inflammatory process that causes RA.”

According to Caton, their findings also point to a possible answer of why the immune system targets the membranes that line joints. Tregs influence other types of T cells to produce a substance known as IL-17, and these cells often travel through the body’s lymphatic system where they then drain out into the joints.

“The big unanswered question of RA is ‘why are joints targeted?’” Caton said. “Of all the tissues in the body, of all the places our immune system could attack, this question remains.”

“One idea is that the immune system isn’t deliberately attacking joints in patients with rheumatoid arthritis,” Caton said, “but the joint inflammation is a side effect of the natural tendency of these cells to accumulate in these areas of the body.”

Funding for this project was provided by the National Institutes of Health’s National Institute for Allergy and Infectious Disease and National Cancer Institute, and a grant from Sibley Memorial Hospital.

The lead author of this study is Soyoung Oh, Ph.D., a postdoctoral fellow in the Caton laboratory, and co-authors include Caton laboratory members Malinda Aitken, Donald M. Simons, Ph.D, Alissa Basehoar, Victoria Garcia, and Elizabeth Kropf.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>