Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New QRISK score to predict heart disease in younger people

09.12.2010
Experts at The University of Nottingham have developed a new 'score' to help GPs detect heart disease in younger people - before it damages their health.

Using data from the electronic health records of over two and half million people researchers have developed, validated and evaluated the new lifetime 'score' which takes account, among many other factors, social deprivation and ethnicity. The results of their research is published today (9 Dec 2010) in the BMJ.

Julia Hippisley-Cox, Professor of Clinical Epidemiology and General Practice in the School of Community Health, said: "This new score has the potential to identify younger people who have a high risk over the course of their lifetime, who are currently not picked up by the more conventional '10 year' risk scores. By identifying people at a younger age, GPs will have more chance of intervening before heart disease sets in, to help reduce their lifetime risk through treatments and lifestyle advice."

Heart disease is the leading cause of premature death in the UK and a major cause of disability. The majority of GPs in the UK currently have access to the QRISK2 formula which predicts cardiovascular disease risk over 10 years. It was developed using data from over 500 GP practices, feeding into the QRESEARCH® database, run by the University in collaboration with EMIS.

Until now there have been no published risk scores that estimate the lifetime risk of heart disease, while incorporating social deprivation or ethnicity. The new lifetime score also takes account of other factors including: smoking status, systolic blood pressure, cholesterol levels, body mass index, family history of heart disease, and age and sex.

The new lifetime 'score' shows that different people could be at high risk compared with the 10 year risk score. The new 'score' will identify people for possible intervention at a much younger age. The risk calculator is available at www.qrisk.org/lifetime

Using the QRESEARCH® database Professor Hippisley-Cox, together with experts from Queen Mary's School of Medicine and Dentistry in London and the Avon Primary Care Research Collaborative in Bristol, have been able to produce a model based on a large, ethnically diverse population. The information could be updated to take account of improvements in data quality and refined over time to reflect trends in population characteristics, changes in clinical requirements and improved methods for communicating cardiovascular risk to patients.

Professor Hippisley-Cox said: "Our study leaves a number of unanswered questions. These include whether early intervention in people with a high lifetime risk but low 10-year risk would have a greater clinical benefit than later intervention; whether people at low absolute risk would value long term treatments with little short term gain; determining the appropriate threshold for lifetime risk to balance the expected benefits against the potential adverse effects of interventions such as statins. Although more research is needed to closely examine the cost effectiveness and acceptability of such an approach, this does represent an important advance in the field of cardiovascular disease prevention".

Cardiovascular disease includes coronary heart disease (angina and myocardial infarction), stroke, or transient ischaemic attacks. National policies now support targeting of interventions to reduce the risk of cardiovascular disease among high risk patients.

The University of Nottingham has a broad research portfolio but has also identified and badged 13 research priority groups, in which a concentration of expertise, collaboration and resources create significant critical mass. Key research areas at Nottingham include energy, drug discovery, global food security, biomedical imaging, advanced manufacturing, integrating global society, operations in a digital world, and science, technology & society.

Through these groups, Nottingham researchers will continue to make a major impact on global challenges.

Lindsay Brooke | EurekAlert!
Further information:
http://www.nottingham.ac.uk

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>