Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the brakes on tumor growth

21.01.2015

Some types of cancer grow incredibly quickly. They have to employ tricks to acquire the nutrients they need for this from their environment. In the quest for new targets for treatment, these tricks are high on the agenda. An international team of scientists has now managed to shed light on crucial details.

Without the ACSS2 enzyme, cancer cells would scarcely be able to divide and multiply as rapidly as they sometimes do. This enzyme enables them to use acetate, in other words acetic acid ester, instead of glucose to produce lipids and thus erect new cell walls, for example. If the enzyme is missing, the cancer cells die under certain conditions.

This discovery is now being reported by an international team of scientists in the journal Cancer Cell. According to the scientists, this discovery may provide a suitable target for a new treatment in which the tumor is “starved”, so to speak. Würzburg professor Almut Schulze is involved in the work. She has been conducting research at the University of Würzburg’s Biocenter in the Department of Biochemistry and Molecular Biology for the past year; prior to that, she worked for 16 years at Cancer Research UK’s London Research Institute.

Effective strategies to combat the lack of nourishment

In contrast to normal cells in tissues, cancer cells multiply very quickly. To do this they need sufficient nourishment to construct new cell components and gain energy. An important nutrient for cancer cells is glucose, which the organism acquires by breaking down food and distributes throughout the body in the bloodstream. However, tumors often grow so quickly that they are not supplied with sufficient blood vessels. So, they lack nutrients and oxygen, which noticeably retards their growth. Cancer cells, however, have developed strategies that enable them to continue to grow even under these conditions. Researchers are trying to identify these changes in the metabolism of cancer cells so that they can use this knowledge to find new targets for cancer treatment.

Sights set on prominent enzymes

In the study just published in the journal Cancer Cell researchers from various disciplines came together to tackle this problem from numerous angles. “First of all we simulated the metabolic processes in cancer cells on the computer and then analyzed them,” reports Almut Schulze. The scientists focused mainly on enzymes that control particularly important responses. They actually discovered a large number of enzymes that are needed for the formation of lipids.

As a next step they deliberately deactivated individual enzymes in breast cancer and prostate carcinoma cells, with the help of genetic engineering, and examined the effects on the growth of the cells. To simulate the conditions in the tumor, the cells were held in a special incubator in which the concentration of oxygen could be regulated. The burning question here: Which enzyme needs to be deactivated in order for cancer cells in a low-oxygen environment to die?

“The enzyme that had the strongest effect was ACSS2,” Almut Schulze reveals. ACSS2 enables cancer cells to switch to acetate when they are lacking glucose and to continue producing lipids in that manner. Acetate is found in small quantities in the blood and in tissues and can be absorbed and processed by tumor cells under certain conditions. As the studies by the scientists show, cancer cells absorb increased acetate and use it to produce lipids if they lack oxygen.

Growth successfully retarded in the experiment

“When the ACSS2 enzyme was deactivated, the cells were no longer able to construct sufficient cell components. As a result, the cells could no longer multiply so quickly, and tumor growth in laboratory animals could be halted,” reveals Schulze. To show that ACSS2 also plays an important role in human tumors, the researchers also examined tissue in breast cancer patients. They found that extremely advanced and aggressive tumors that often contain regions with a shortage of oxygen form large quantities of this enzyme. “If we could develop an agent that stops ACSS2 from functioning, this could be used to treat such tumors,” hopes the scientist.

Experts from many places and numerous fields

Molecular biologists, biochemists and pharmaceutical chemists, each one an expert in his or her research area, from London, Cambridge, Oxford, Glasgow, and Würzburg, were involved in the study; they were supported by the staff of a large pharmaceutical company. The team led by Almut Schulze has been looking into the role of lipid synthesis in cancer development for many years now. Its main contribution to this study was its identification of ACSS2 as an important enzyme for the growth of cancer cells and its examination of tumor tissue. In future, Schulze and her colleagues are keen to investigate any further roles that ACSS2 might play for tumor cells.

Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress. Zachary T. Schug, Barrie Peck, Dylan T. Jones, Qifeng Zhang, Shaun Grosskurth, Israt S. Alam, Louise M. Goodwin, Elizabeth Smethurst, Susan Mason, Karen Blyth, Lynn McGarry, Daniel James, Emma Shanks, Gabriela Kalna, Rebecca E. Saunders, Ming Jiang, Michael Howell, Francois Lassailly, May Zaw Thin, Bradley Spencer-Dene, Gordon Stamp, Niels J.F. van den Broek, Gillian Mackay, Vinay Bulusu, Jurre J. Kamphorst, Saverio Tardito, David Strachan, Adrian L. Harris, Eric O. Aboagye, Susan E. Critchlow, Michael J.O. Wakelam, Almut Schulze, and Eyal Gottlieb. http://dx.doi.org/10.1016/j.ccell.2014.12.002

Contact

Prof. Dr. Almut Schulze, T: +49 (0)931 31-83290, almut.schulze@uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>