Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-transport discovery may help define new strategies for treating eye disease

22.08.2019

Study reveals how proteins from the eye's nerve cells relay visual cues to different parts of the brain

Many forms of vision loss stem from a common source: impaired communication between the eye and the brain. And at the root of all eye-to-brain communication are the hundreds of proteins generated by the retina's nerve cells.


While previous studies identified the various proteins produced in the retina, the ultimate destination of these proteins was largely unknown. For this research, the optic nerve was an especially important focus of study, as it is implicated in so many devastating eye diseases.

Credit: Scripps Research

A new study from Scripps Research, which appears this month in Cell Reports, examines these proteins in unprecedented detail--providing surprising new insights into how visual signals are distributed to different regions of the brain. The results are an important first step in understanding and eventually treating vision loss from glaucoma, multiple sclerosis or even trauma.

More than 3.3 million Americans aged 40 years and older are either legally blind or have visual impairments that can't be corrected with today's interventions, according to the Centers for Disease Control and Prevention.

"Proteins are usually the targets of drugs--so if you want to design a drug that will help communication between the eye and the brain, it helps to know what proteins those drugs would target," says Hollis Cline, PhD, co-chair of Scripps Research's Department of Neuroscience, who led the research project. "This type of study was never possible before because it wasn't feasible to see how these proteins move around the brain. The technology didn't exist."

To create the technology, Cline's lab worked closely with the lab of John Yates III, PhD, a Scripps Research chemist who has pioneered new ways to use an analytical technique known as mass spectrometry to study proteins and their functions.

Using this new method--developed over the course of several years--Cline's team was able to "label" about 1,000 different types of proteins that originate in the eye's retinal ganglion cells, and then watch how and where they travel in a living brain of a rat. Just as in human brains, the proteins are transported via neuronal axons, which are long, threadlike nerve fibers that extend from the eye into the brain via the optic nerve.

"The brain is an ensemble of very complicated architecture, and it's hard to separate every component and study the pieces individually," says Lucio Schiapparelli, PhD, a neuroscientist in Cline's lab and a lead author of the study. "Our methodology allowed us examine the visual system in a way that had not been studied before so we could observe the molecules independently and analyze their biochemistry."

Going into the study, Cline said she was curious whether similar types of proteins would travel to distinct targets within the brain. The retina projects proteins into more than 30 different areas of the central nervous system, but for the study, her team chose to evaluate the two major targets: the superior colliculus (which analyzes motion in the visual field and controls goal-directed head and eye movements), and the lateral geniculate nucleus (which analyzes the shape of objects we see and sends that information to a higher brain area, the visual cortex).

While previous studied identified various proteins produced in the retina, the ultimate destination of these proteins was largely unknown. The optic nerve was an especially important focus of study, as it is implicated in so many devastating eye diseases.

"We were surprised right from the start to find proteins in the axons of the optic nerve that everybody previously thought would be functioning only in the eye," Cline says. "These are proteins that are usually in the nucleus of a cell, but we found them far, far away from the nucleus, participating in some form of communication."

This finding, Cline says, has already fueled new research on how these proteins may influence health and disease. Because this type of neuronal protein exists in other parts of the body, it may play a role in other nerve-cell communication disorders such as Charcot-Marie-Tooth disease.

The optic nerve is the information highway from the eye to the brain, sending signals to different destinations. But the team discovered that that similar proteins didn't always share a common destination. Rather, many proteins were transported preferentially to one brain region, while some were transported to all of the regions studied.

"Understanding the transport of these proteins out of the retina is essential to understand how the visual system functions," Cline says. "This can help us study what happens when a person experiences nerve damage and vision loss--and will hopefully lead us to treatments that can enhance protein transport and prevent cells from dying."

###

Authors of the study, "The Retinal Ganglion Cell Transportome Identifies Proteins Transported to Axons and Presynaptic Compartments in the Visual System In Vivo," include Lucio M. Schiapparelli of Scripps Research; Sahil H. Shah of Scripps Research, University of California, San Diego, and Byers Eye Institute and Spencer Center for Vision Research at Stanford University; Yuanhui Ma of Scripps Research, Daniel B. McClatchy of Scripps Research, Pranav Sharma of Scripps Research, John R. Yates III of Scripps Research, Jeffrey L. Goldberg of Byers Eye Institute and Spencer Center for Vision Research, and Hollis T. Cline of Scripps Research.

This study was supported by grants from the National Institutes of Health [R01EY011261, R01EY027437, P30EY019005, R01MH103134], the Hahn Family Foundation [P41GM103533, R01MH067880]; the Glaucoma Research Foundation [P30EY026877], Research to Prevent Blindness, and support from the Helen Dorris Foundation.

Media Contact

Kelly Quigley
kquigley@scripps.edu
858-784-2036

 @scrippsresearch

http://www.scripps.edu 

Kelly Quigley | EurekAlert!
Further information:
https://www.scripps.edu/news-and-events/press-room/2019/20190821-cline-visual-system.html
http://dx.doi.org/10.1016/j.celrep.2019.07.037

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>