Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein RAL associated with aggressive characteristics in prostate, bladder and skin cancers

18.05.2012
We have known for years that when the proteins RalA and RalB are present, cells in dishes copy toward aggressive forms of cancer. However, until this week, no study had explored the effects of RAL proteins in human cancers – an essential step on the path to developing drugs to target these proteins.

From metastasis in bladder cancer, to seminal vessel involvement in prostate cancer, to shortened survival in squamous cell carcinoma, a study published this week in the journal Cancer Research shows that proteins RalA and RalB are associated with aggressive cancer characteristics in human tumors.

"But here's the interesting part," says Dan Theodorescu, director of the University of Colorado Cancer Center and the paper's senior author – "it wasn't the presence of these proteins per se that predicted aggressive cancer characteristics, it was the signature of other genes changed by RAL activity in the cells that predicted poor outcomes."

RalA and RalB activity leads to a cascade of genetic (and gene expression) changes. Theodorescu and colleagues discovered the signature of these changes, and this pattern of turning up and turning down genes is what predicts aggressive cancers.

"It might not be presence of these RAL proteins themselves that drives cancer as much as their ability to drive genetic changes that in turn drive cancer," Theodorescu says.

In the three types of human tumors explored – bladder, prostate, and the skin cancer known as squamous cell carcinoma – panels of genes affected by RalA and RalB in turn predicted stage and survival.

"The RAL family of GTPases are cousins of the now well-known RAS family of oncogenes," Theodorescu explains. "These RAS family GTPases, are found in leukemias, lung cancer, colon cancer and others, and have been a focus of efforts to develop targeted cancer therapies. We imagine the related RAL family may provide a similar target."

Remove RalA and RalB from cancer cells and perhaps doctors can stop the genetic changes that cause aggressive cancer.

Support for the study was provided by National Institutes of Health and National Cancer Institute grant CA075115.

Erika Matich | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

nachricht Radioisotope couple for tumor diagnosis and therapy
14.05.2019 | Kanazawa University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>