Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project start: New active substance targeting dreaded hospital pathogens

29.05.2015

In the German Center for Infection Research (DZIF), scientists from the universities of Tübingen, Münster and Munich join forces and prepare together with the company Hyglos clinical studies on an active substance against the dreaded hospital pathogen Staphylococcus aureus: A highly effective protein from bacteria-specific viruses, so-called bacteriophages, shall rapidly kill the bacteria, which frequently occur in the nose. Due to the specific action, the natural microflora is maintained. Such prophylactic treatment of nasal colonization could counteract the spread of especially methicillin-resistant staphylococcus aureus (MRSA) in hospitals and thereby prevent infections in patients.

Every third person, according to expert estimates, carries the bacterium Staphylococcus aureus in their nose - which is not dangerous in the case of healthy individuals, however quickly becomes a problem if the carrier is admitted to a hospital. This since the pathogen can enter for example into wounds in connection with surgery and potentially cause dangerous infections.

In addition there is a large risk of spread of the pathogen as a hospital bug. Especially feared are methicillin-resistant Staphylococcus aureus isolates, abbreviated MRSA, because of their resistance to many of the commonly used antibiotics.

“A rapid detection and effective elimination of MRSA colonization in the nose prior to a hospital stay is a crucial step in combating these hospital germs", so the conviction of Prof. Dr. Karsten Becker at the University Hospital Münster. The bacteria in the nose are increasingly resistant to the currently used antibiotic mupirocin and the duration of the decolonization and follow-up control is around one week. Under such circumstances, no effective MRSA prevention is possible for patients immediately in need of surgery.

Together with the Hyglos GmbH in Bernried and with support from the BMBF, scientists at the University Hospital Münster have developed a specific active substance in recent years and studied its effect: A phage lytic enzyme that is a protein from viruses that infect bacteria, specifically attacks Staphylococcus aureus cells and dissolve them. The protein was synthetically produced and optimized as a "designer protein" with the working name HY-133.

"We do like to describe it as a MRSA-killing protein, even if it sounds somewhat sensational," explains Dr. Wolf-gang Mutter from Hyglos GmbH. In fact, all Staphylococcus aureus cells, whether resistant or not resistant, will be killed by this new active substance within a very short time. And this without the natural microflora in the nose being destroyed nor does resistance develop.

In cooperation with the microbiologist Prof. Dr. Andreas Peschel, who coordinates the DZIF research on "Healthcare-associated and antibiotic-resistant infections", the active substance will now be prepared for clinical testing. More than 1.5 million euros will be provided for HY-133 development within the DZIF:

The substance will first be manufactured under GMP guidelines (manufac-turing practice according to pharmaceutical standards) and subsequently be test-ed for preclinical toxicology. The pharmacist Prof. Dr. Gerhard Winter at the LMU Munich will develop a stable formulation, so that the substance may be conven-iently and safely administered as a gel or in any other form to the patient.

The project will be conducted in view of subsequent clinical trials, in which the rapid decolonization of Staphylococcus aureus strains will be studied in the nasal flora of volunteers. "In addition to new antibiotics and vaccines we urgently need specific agents for decolonization of problematic germs. The HY-133 protein is a highly innovative active substance for this purpose, which could lead to many simi-lar development programs", Prof. Dr. Andreas Peschel adds.

That the fight against resistant hospital germs is taken very seriously at the political level, is reflected in the coming week: At the G7 summit in Elmau the topic antibi-otic resistance is on the agenda.

In case you need any pictures, please contact:
E-mail: karolina.heed@hyglos.de

Contact
Prof. Dr. Andreas Peschel
University of Tübingen
DZIF-Coordinator „Healthcare-associated and antibiotic-resistant infections“
T +49 7071-29-81515
E-mail: Andreas.Peschel@med.uni-tuebingen.de

Prof. Dr. Karsten Becker
University Hospital Münster
T +49(0) 251-83-55375
E-mail: kbecker@uni-muenster.de

Prof. Dr. Gerhard Winter
Ludwig Maximilian University of Munich
T +49(0) 89-2180-77022
E-mail: gerhard.winter@cup.uni-muenchen.de

Dr. Wolfgang Mutter
Hyglos GmbH, Bernried am Starnberger See
T +49(0)8158-9060-201
E-mail: wolfgang.mutter@hyglos.de

Ms. Karola Neubert and Ms. Janna Schmidt
DZIF-Press Office
T +49531-6181-1170/1154
E-mail: presse@dzif.de


At the German Center for Infection Research (DZIF) nationwide around 300 scien-tists from 32 institutions jointly develop new approaches for prevention, diagnosis and treatment of infectious diseases. One of the focal points is the research on hospital germs and antibiotic-resistant bacteria. The DZIF is funded by the BMBF. More information on www.dzif.de

University of Tübingen – Infectious Diseases and Microbiology form a major focus of research at the University of Tübingen, especially in the Interfaculty Institute for Microbiology and Infection Medicine (IMIT). The study of staphylococci, bacte-ria that often develop resistance to antibiotics and cause infections in the hospital, is a particular focus of the IMIT researchers. www.uni-tuebingen.de

University Hospital Münster (UKM) represents cutting-edge medicine in the German hospital landscape as well as research at the highest international level. Important research priorities of the UKM Institute of Medical Microbiology are staphylococci - pathogens and infections - as well as diagnostics, typing, character-ization and susceptibility testing of microorganisms. www.klinikum.uni-muenster.de

Ludwig Maximilian University of Munich (LMU), Department of Pharmacy - The development of stable formulations for protein drugs and the administration of new biotech drugs in sustained release forms or their local application are key research areas in Pharmaceutical Technology at the LMU. Only with appropriate forms of preparation it will be possible in the end, to successfully apply sensitive substances such as the new phage lytic enzyme. www.uni-muenchen.de

Hyglos GmbH is a biotechnology company based in the Biotechnology Center Bernried south of Munich. With its proprietary technology the Hyglos scientists develop highly specific bacteriophage-based agents for the detection and elimina-tion of harmful bacteria and bacterial toxins. Hyglos is an IAFP Innovation awardee for such technological advances. www.hyglos.com

Karola Neubert | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>