Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Processed tubes prevent the risk of thrombosis

22.03.2011
If blood vessels are narrowed by deposits in the veins, a blockage of the veins may be caused. A thrombosis forms, which can lead to a cardiac infarction.

Small artificial tubes in the veins, so-called stents, dilate the veins and allow the blood to circulate again without hindrance.


Plasma chamber
Copyright: Bellhäuser

But after a while, the deposit of cells and blood components starts at these tubes, as well, and thus the blood vessel narrows again. In an international joint project, scientists from Saarbrücken are now investigating the feasibility, how to change the surface of these tubes so that no unwanted components may no longer be deposited there.

Under the auspices of INM — Leibniz Institute for New Materials, scientists are working on coating processes that smooth the tube walls and make them well tolerated for the human body. The kick-off meeting of the joint project Nano4stent took place at INM at the beginning of January, bringing together the joint partners of INM, the Saarland University Hospital Homburg, the Kocaeli University/Turkey, and the Korean University of Technology and Education/Korea. The joint project Nano4stent is funded by the EU in the framework of the international cooperation network KORANET.

The scientific experts at INM use a special method in their research work: In the same way as water drops from vapor are formed uniformly on the cold lid of a pot, the researchers form the coating on the surface of the tube. "It is our aim to cover the surface of the tubes with a completely even protection layer", says Cenk Aktas, head of the program division "CVD/Biosurfaces". For this purpose, small cavities will be applied synthetically on the surface by using laser treatment. After each cavity and the whole surface of the tubes is perfectly coated, the unwanted components will no longer have a chance to react with the surface of the tube and to adhere there.

INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring question: Which material properties are new, how can they be investigated and how can they be used in the future?

The INM — Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally visible center for materials research. It cooperates scientifically with national and international institutes and develops for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are chemical nanotechnology, interface materials and materials in biology.

Contact:

Dr. Cenk Aktas
INM — Leibniz Institute for New Materials
Phone: +49 681 9300 140
E-mail: cenk.aktas@inm-gmbh.de

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>