Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal vitamin A deficiency tied to postnatal asthma

13.02.2014
Smooth muscle abnormalities in developing airways may be overlooked factor in asthma

A team of Columbia University Medical Center (CUMC) investigators led by Wellington V. Cardoso, MD, PhD, has found the first direct evidence of a link between prenatal vitamin A deficiency and postnatal airway hyperresponsiveness, a hallmark of asthma.


Vitamin A deficiency during fetal development can lead to excessive growth of smooth muscle surrounding the airways, making the lungs overly reactive to stimulation from the environment later in life and thus at risk to develop asthma. In these cross-sectional images of the lungs of embryonic mice, the dark stains represent smooth muscle. The left image is from a mouse whose mother was fed sufficient vitamin A, while the right image is from a mouse whose mother was fed insufficient vitamin A.

Credit: Lab of Wellington V. Cardoso, M.D., Ph.D./Columbia University Medical Center

The study, conducted in mice, shows that short-term deficit of this essential vitamin while the lung is forming can cause profound changes in the smooth muscle that surrounds the airways, causing the adult lungs to respond to environmental or pharmacological stimuli with excessive narrowing of airways. The findings were published online in the Journal of Clinical Investigation.

"Researchers have long wondered what makes some people more susceptible than others to developing asthma symptoms when exposed to the same stimulus," said Dr. Cardoso, senior author, director of the new Columbia Center for Human Development, and a faculty member in the Division of Pulmonary Allergy Clinical Care Medicine. "Our study suggests that the presence of structural and functional abnormalities in the lungs due to vitamin A deficiency during development is an important and underappreciated factor in this susceptibility."

"More generally," Dr. Cardoso said, "our findings highlight a point often overlooked in adult medicine, which is that adverse fetal exposures that cause subtle changes in developing organs can have lifelong consequences."

Previous studies had shown that retinoic acid (RA)—the active metabolite of vitamin A—is essential for normal lung development. Until now, however, little was known about the impact of prenatal RA deficiency on postnatal airway function.

In an earlier study, Felicia Chen, MD, a member of Dr. Cardoso's team and first author of the current paper, identified a number of genes regulated by RA signaling in fetal lung development. Additional analysis showed the abnormal presence of genes involved in the formation of smooth muscle when RA signaling was disrupted. This finding prompted the researchers to take a closer look at the effects of vitamin A deficiency on the development of the smooth muscle that surrounds airways as they continued to form and branch.

The researchers used a mouse model in which they could control when and in what amount vitamin A would reach the developing fetus through maternal diet. "We timed the vitamin A deficiency to the middle of gestation, coinciding with the period of formation of the airway tree in the fetus," Dr. Cardoso said. Fetuses that were deprived of vitamin A were found to have excess smooth muscle in the airways, compared with controls.

In a subsequent experiment, the mice were again deprived of vitamin A during the same developmental stage, but returned to a normal diet after that stage and until adulthood. "When the animals reached adulthood, they appeared normal—that is, they had no problems typically associated with vitamin A deficiency," said Dr. Cardoso. "However, pulmonary function tests showed that their lungs were clearly not normal." When the mice were challenged with methacholine, a chemical that causes the airway to contract, their response was significantly more severe than that of controls.

Additional experiments determined that, during development, RA utilization largely occurs where the bronchial tubes branch to form new generations of airways. As each new tube is formed, it is surrounded by smooth muscle. According to the researchers, RA signaling temporarily inhibits the development of smooth muscle in airways in areas that are still branching, preventing precocious and excessive formation of these cells. "If an animal is deprived of vitamin A, RA signaling is disrupted and smooth muscle overdevelops," said Dr. Cardoso.

Finally, the study showed that the structural and functional changes in the airways occurred in the absence of inflammation. "This does not imply that inflammation is not an important component of pulmonary conditions characterized by hyperresponsiveness, such as asthma," said Dr. Cardoso. "But it reminds us of the multifactor origin of asthma and indicates an additional, structural component that cannot be overlooked.

The findings underscore the importance of sufficient vitamin A in the diet, which remains a significant challenge in developing countries. The study also has potential clinical implications in the developed world. "Most pregnant women in the U.S. are probably getting enough vitamin A in their diet, but it's possible that their babies are not making proper use of it," said Dr. Cardoso. "The body has a very complex system for processing vitamin A, and this system is prone to interference from outside factors, such as cigarette smoke and alcohol. We need to understand more precisely how early exposures of the fetus to adverse environmental factors can interfere with crucial developmental mechanisms, such as the one we found linking vitamin A to airway structure and function."

The paper is titled, "Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice." The other contributors are Hector Marquez (Boston University), Youn-Kyung Kim (Rutgers University, New Brunswick, N.J.), Jun Qian (CUMC), Fengzhi Shao (Boston University), Alan Fine (Boston University), William W. Cruikshank, (Boston University), and Loredana Quadro (Rutgers).

The authors declare no financial or other conflicts of interests.

This study was supported by grants from the National Institutes of Health (R01 HL067129-09 and R01 HD057493).

The Columbia Center for Human Development (CCHD) is a research hub recently established by the Department of Medicine. The CCHD will support collaboration by basic and clinical scientists across the medical campus to promote research on the basic mechanisms involved in building organs and on the developmental basis of human disease. Integrating systems biology, genetic models, and genomic approaches, the center will investigate how environmental stressors influence developmental events that can result in increased risk of disease in childhood and adulthood. The center's ultimate goal is to advance understanding of developmental mechanisms and to identify novel strategies for reducing exposure to early developmental stressors and treating or lowering the incidence of disease. The center is directed by Wellington V. Cardoso, MD, PhD.

Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast. For more information, visit cumc.columbia.edu or columbiadoctors.org.

Karin Eskenazi | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>