Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premium car research & cow dung point to new high tech disease diagnosis

14.10.2009
Researchers at the University of Warwick have taken high tech gas sensors normally used to test components for premium cars and applied the same techniques to human blood, human urine, and even cow dung samples from local cow pats.

The results could lead to a new high tech medical tool that could provide a fast diagnosis for some of the most difficult gastrointestinal illnesses and metabolic diseases.

Fermentation of undigested foods in the colon by its resident bacteria affects not only colonic health (protection against inflammation and tumour formation) but also influences metabolic health. Studying fermentation and the volatile organic compounds (VOCs) it generates directly is difficult due to lack of easy access to the colon.

Researchers from the University of Warwick’s innovation specialists WMG have devised a solution to this problem using a special suite of equipment normally used to test car components for premium cars. The equipment heats car material samples to see what range of “volatile chemicals” (essentially gases) are emitted from car components to understand what implications that would have for air quality in the car and how it might affect the future recycling of the component. The car researchers wondered if this high tech equipment for studying volatile chemicals in premium cars would also assist their medical colleagues seeking to study volatile organic compounds from the human colon.

The University of Warwick WMG researchers Dr Mark Pharaoh and Dr Geraint J. Williams invited medical consultant Dr Ramesh P Arasaradnam (a Clinician Scientist and Lecturer in Gastroenterology in Warwick Medical School and a Gastroenterologist at University Hospitals Coventry & Warwick) to work with them to advise on how they could test their equipment on organic matter. Professors Sudesh Kumar, Chuka Nwokolo and K D Bardhan, from Warwick Medical School, also joined the team.

The gas products of fermentation include various volatile organic compounds, the relative proportions of which may change in disease. The research team have coined the term ‘fermentome’ to describe the complex interplay between diet, symbiont bacteria and volatile gases The clinical researchers in the team believed that the research engineer’s equipment could help them study such a ‘fermentome’ which could then be used for diagnosis and disease characterisation. Measurement of VOCs through non-invasive methods could then have an important application as a hypothesis-generating tool and could even have clinical applications.

The joint clinician and engineering research team have now performed tests using the car analysis equipment on human blood, human urine, and even cow and horse dung harvested from the local area. The results so far suggest that the equipment could indeed be used to obtain a useful picture of the range of fermentation gases produced by this organic matter. Knowing what those mix of gases are could therefore provide a useful analogue understanding of what gastrointestinal illness or metabolic diseases are afflicting patient.

The team have just published that research in a paper entitled “Colonic fermentation – More than meets the nose” in the journal Med Hypotheses. The research team are now exploring funding options that would allow them to take this new technique into a larger scale studies including clinical trials.

Dr Mark Pharaoh said:

“These early results suggest that we could indeed use this automotive technology to give medical consultants a very precise understanding of the mix of gases being produced within the human gut. An understanding of the precise mix of gases is a very valuable clue to understanding any problem with the balance and mix of bacteria that are generating those gases.”

Dr Ramesh P Arasaradnam said:

“This is could be a vital new tool in the diagnosis of gastrointestinal as well as metabolic diseases. Gaining first hand information of what is going on in the gut would require very invasive procedures. Even simply culturing the bacteria from a patient’s urine or faeces takes a considerable amount of time. This technique could give medical consultants such as myself valuable information about what is causing a patient’s condition long before the data from a standard bacterial culture would be available.”

The research team are now exploring funding options that would allow them to take this new technique into a clinical trial

Note for Editors:

The research paper just published in "Medical Hypotheses "- doi:10.1016/j.mehy.2009.04.027 is entitled : “Colonic fermentation – More than meets the nose”. The researchers are: Dr Mark Pharaoh and Dr Geraint J. Williams from the University of Warwick (WMG); Dr Ramesh P Arasaradnam, Professor Sudesh Kumar and Professor C.U. Nwokolo from Warwick Medical School and University Hospitals Coventry & Warwick; Prof K D Bardhan from Warwick Medical School, University of Warwick and Rotherham General Hospital.

For further information contact:

Dr Mark Pharaoh, University of Warwick, WMG
Tel: +44 (0)24 76 523941
m.w.pharaoh@warwick.ac.uk
Ramesh P Arasaradnam., Clinician Scientist and Lecturer in Gastroenterology
Warwick Medical School, University of Warwick, and University Hospitals Coventry & Warwick Tel: 02476 966087

E mail: r.arasaradnam@warwick.ac.uk

Peter Dunn, Head of Communications,

University of Warwick Tel: +44 (0)24 76 523708
or mobile/cell +44(0)7767 655860 email: p.j.dunn@warwick.ac.uk

Peter Dunn | EurekAlert!
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>