Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting post-traumatic stress disorder before it happens

14.06.2012
Tel Aviv University researchers use brain imaging to uncover susceptibility to psychological stress and trauma

Most people have intense emotional reactions to traumatizing events like road accidents or combat. But some suffer far longer, caught in the grip of long-term debilitating disorders such as Post-Traumatic Stress Disorder (PTSD).

Because doctors cannot predict who will develop these disorders, however, early or preventive intervention is not available. Now, a new project led by researchers at Tel Aviv University seeks to identify pre-traumatic subjects — those who are more susceptible to long-standing disorders if exposed to a traumatic incident.

The project, a joint work between Prof. Talma Hendler of TAU's School of Psychological Sciences, the Sackler Faculty of Medicine and the new Sagol School of Neuroscience, and Prof. Nathan Intrator of TAU's Blavatnik School of Computer Science and the Sagol School of Neuroscience, uses electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate the areas of the brain that regulate the emotional response to traumatic stress, then decode the brain functionality which indicates pre- or post trauma psychopathology.It's a powerful and novel approach to probing the susceptible brain and providing ongoing monitoring tailored to each individual.

This ongoing interdisciplinary research was done at the Functional Brain Center in collaboration with the Wohl Institute for Advanced Imaging at the Tel Aviv Sourasky Medical Center.

Taking PTSD personally

The earlier and more accurately PTSD is diagnosed, the more likely a healthcare provider can treat it. And beyond their diagnostic capabilities, the research findings could be used to monitor people who will be at high risk for developing these disorders, such as soldiers in combat units.

Diagnosis and treatment of mental disorders depends on understanding how the brain encodes and regulates emotions. For example, certain combinations of activities in emotional and cognitive brain areas may better indicate an individual's susceptibility to traumatic disorders than studying each area by itself, believes Prof. Hendler. In the last few years, the researchers have published on these issues in leading scientific journals including PNAS and Cerebral Cortex.

To look at the interactions between areas of the brain, study participants were monitored using EEG (which records electrical activity along the scalp) and fMRI (which measures changes in blood oxygenation in the brain) concurrently. Connections between the emotional and cognitive areas of the brain were recorded as subjects were exposed to continuous stimulations designed to cause stress and other emotional effects such as horror and sadness. Using advanced computational algroithms, the researchers identified the brain activity that was connected to the reported emotional experience. This brain marking will provide targets for therapeutic procedures based on a person's individual brain activity.

With these experiments, the researchers hope to improve their ability to read emotional states in the depths of the human brain. While they are currently working with EEG and fMRI, Prof. Intrator hopes that in the later stages of development they will be able to read results collected by EEG alone. Initial findings were recently presented at the prestigious Neural Information Processing Systems Conference and published in the journals Brain Connectivity and Neuroimage.

Diagnostics on the go

Ultimately, the researchers hope to develop a portable brain monitoring machine that will "enable the detection or quantification of the emotional state of people suffering from trauma," allowing for minimally invasive monitoring or diagnosis, says Prof. Intrator. He is working on applying this technology to the diagnosis of additional psychological disorders, including schizophrenia, depression, and attention deficit disorder (ADD) for the better management of these diseases. In the case of ADD, for example, this method could be used to monitor the level of concentration in a patient, and provide feedback that could help to regulate the patient's medicinal needs, such as the dosage of Ritalin.

Some of these projects are part of the newly-formed Israel Brain Technology (IBT) initiative, launched by Israeli President Shimon Peres and run by entrepreneur Rafi Gidron. IBT leverages technology and knowledge from Israeli universities to help Israel become a power player in neurotechnology.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Aviv Brain IBT Israeli Neuroscience PTSD Predicting Psychological Science brain area mental disorder

More articles from Health and Medicine:

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

AI and high-performance computing extend evolution to superconductors

27.05.2019 | Information Technology

Meteor magnets in outer space

27.05.2019 | Physics and Astronomy

Coat of proteins makes viruses more infectious and links them to Alzheimer's disease

27.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>