Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precisely Off The Mark: Possible Cause Discovered For Failure of Targeted Liver Cancer Therapies

24.11.2014

Targeted therapy against liver cancer: Cause of failure discovered

The failure of experimental liver cancer therapies directed specifically against the EGFR protein is presumably the result of insufficiently specific patient selection. This is the conclusion that can be drawn from data that were obtained within the framework of a project carried out by an Austrian Science Fund FWF doctoral programme, and that have now been published in NATURE Cell Biology.


Targeted therapies against liver cancer require a detailed picture of the liver. A FWF doctoral programme offers new insights.

© Nicole Amberg & Karin Komposch

The data prove that the tumour-promoting effect of EGFR originates, not directly from its expression in the tumour cells, but rather from its presence in the surrounding cells (macrophages) of the immune system. This predicts that experimental anti-EGFR therapeutic agents will prove effective only in patients who exhibit EGFR in the immune cells. This expanded understanding of the occurrence of EGFR in macrophages now offers, however, potential new approaches for the treatment of liver cancer.

Liver cancer is one of the most common malignant tumours. As treatment options are limited, the prognosis is very poor. Hopes were therefore high when, a few years ago, it was shown that a special protein – the epidermal growth factor receptor (EGFR) – accumulates in up to 70 percent of all liver tumours and promotes tumour development. It was believed that a target had been found for targeted therapies. However, the use of therapeutic agents to inhibit EGFR proved unsuccessful and the expected effect remained largely absent. Too little was known about the function of EGFR in liver cancer development. This is precisely what a research project at the Medical University of Vienna has now clarified.

SURPRISING FINDING

At the core of the work carried out at the Institute of Cancer Research were mouse models in which the presence of EGFR was suppressed in various different cell types of the liver. This made it possible to also grow liver tumours whose tumour cells were completely lacking EGFR. According to the previous knowledge, this would have been expected to result in decreased tumour growth. However, during the analysis a surprise emerged, as Prof. Maria Sibilia, coordinator of the FWF doctoral programme "Inflammation and Immunity", explains: "We found just the opposite – tumour growth increased. This was not the case for tumours in which EGFR was lacking only in the surrounding macrophages. There, tumour growth was considerably decreased." In fact, until now, it wasn't known that EGFR is even expressed in these immune cells. These liver macrophages, or Kupffer cells, become active particularly when inflammations and infections occur as a means to protect the body – the fact that EGFR has a tumour-promoting effect in these cells was not known.

To gain a better understanding of how the activity of EGFR on the Kupffer cells influences tumour growth, the team headed by Prof. Sibilia further analysed its functional mechanism. The group thereby succeeded in decoding a complex chain of cellular signalling pathways that actually leads to increased growth of liver cells. According to project team member Karin Komposch, "We were able to show that injuries to hepatocytes trigger the release of the messenger substance, interleukin-1beta. This, via diverse intermediate stages, causes EGFR in Kupffer cells to stimulate the production of interleukin-6 (IL-6), which causes liver cells to proliferate. In principle, the release of IL-6 should stimulate the proliferation of hepatocytes thus aiding in the repair of damaged tissue – but can also lead to uncontrolled hepatocyte proliferation, and thus to tumour formation."

TREATMENT & DIAGNOSIS

In the team's view, this fresh understanding now offers a new opportunity to use EGFR inhibitors in the treatment of liver cancer. These inhibitors would actually have to be used only in patients with EGFR expression in the Kupffer cells, and not in patients with EGFR expression exclusively in the tumour cells/hepatocytes. If these inhibitors were to act only in Kupffer cells, maximum reduction of tumour growth could be achieved. However, Ms. Komposch believes this work also offers another key finding for cancer diagnosis: "The presence of EGFR in the Kupffer cells could provide crucial information on the future course of tumour development, making it an important prognostic marker."

On the whole, the FWF doctoral programme findings thus provide both fundamental insight into complex cellular signalling pathways and concrete starting points for new developments in treatment and diagnosis.


Original publication: EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. H. Lanaya, A. Natarajan, K. Komposch, L. Li, N. Amberg, L. Chen, S. K.Wculek, M. Hammer, R. Zenz, M. Peck-Radosavljevic, W. Sieghart, M. Trauner, H. Wang und M. Sibilia. Nature Cell Biology 16, 972–981 (2014) doi:10.1038/ncb3031

Image and text available from Monday, 24 November 2014, from 10:00 a.m. CET, at:
http://www.fwf.ac.at/en/research-in-practice/project-presentations/2014/pv201411/


Scientific Contact:
Prof. Maria Sibilia
Medical University of Vienna
Institute of Cancer Research
Borschkegasse 8a
1090 Vienna, Austria
T +43 / 1 / 40160 - 57502
E sibilia-office@meduniwien.ac.at

Austrian Science Fund FWF:
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / 1 / 505 67 40 - 8111
E marc.seumenicht@fwf.ac.at
W http://www.fwf.ac.at

Copy Editing & Distribution:
PR&D – Public Relations for Research & Education Mariannengasse 8
1090 Vienna, Austria
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Dr. Katharina Schnell | PR&D - Public Relations für Forschung & Bildung

Further reports about: EGFR Kupffer cells immune liver liver cancer macrophages tumour tumour cells tumour growth tumours

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>