Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potentially targetable signaling pathway generates slowly proliferating, chemo-resistant cancer cells

12.01.2015

A signaling pathway responsible for the generation of slowly proliferating cancer cells, which are hard to eradicate with current treatments and thought to be a cause of subsequent disease relapse, has been reported in a Rapid Impact study published in Molecular Cancer Research, a journal of the American Association for Cancer Research.

"We have identified a new pathway in which well-studied signaling molecules string together to regulate cell proliferation," said Sridhar Ramaswamy, MD, an associate professor of medicine at Massachusetts General Hospital Cancer Center and Harvard Medical School in Boston. "Since a number of these molecules are under intensive study as therapeutic targets for various cancer types, we are currently designing strategies to target this pathway in animal models in order to better clarify the potential clinical implications of these findings.

"All cancers contain some cells that are rapidly proliferating and many that proliferate only very slowly," explained Ramaswamy, who is also an associate member of the Broad Institute and the Harvard Stem Cell Institute. "Most cancer treatments target rapidly dividing cancer cells but leave the slowly dividing ones unharmed and still capable of causing disease recurrence after the initial treatment. Our goal has been to understand how these slow proliferators are produced in order to devise ways to eliminate them."

When cancer cells growing in the laboratory divide, they usually produce two daughter cells that have the same rate of proliferation, but sometimes one daughter cell proliferates at a much slower pace than the other.

Ramaswamy and colleagues have been investigating why cancer cells undergo this type of asymmetric cell division for a number of years. In a previously published study, they found that if a cancer cell asymmetrically suppresses expression of a protein called AKT right before dividing, it produces two daughter cells: one that has normal levels of AKT protein and proliferates rapidly like the parent cell, and one that has low levels of AKT and proliferates slowly.

They also detected these rare cancer cells with low levels of AKT in breast cancer patients and found that these cells were highly resistant to the combination chemotherapy being used to treat the patients.

In this new study, the researchers used a number of molecular biology techniques to investigate how cancer cells dividing in the laboratory produce daughter cells with different levels of AKT. They found that decreased signaling through beta1-integrin, a molecule found on the surface of most cancer cells, decreased the activity of the signaling molecule FAK. This, in turn, increased the activity of a complex of signaling molecules called mTORC2, which led to suppression of AKT1 protein levels by a molecule called TTC3 and the proteasome complex.

"Prior to these studies, we thought that asymmetric suppression of AKT might just relate to random fluctuations in protein levels during cell division," said Ramaswamy. "We discovered that this is not the case; it is actually regulated by a potentially targetable signaling pathway, which may offer new avenues for reducing the proliferative heterogeneity within tumors for therapeutic effect."

The study was supported by funds from Stand Up To Cancer, the National Cancer Institute, the Howard Hughes Medical Institute, Susan G. Komen, the Prostate Cancer Foundation, CNPq (the National Council for Scientific and Technological Development in Brazil), and Instituto de Salud Carlos III in Spain. Ramaswamy declares no conflicts of interest.

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

For AACR information, visit Fast Facts

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 33,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in 101 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with over 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>