Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential New Targets for Antidepressant Medications

27.08.2008
The news about antidepressant medications over the past several years has been mixed. The bad news from large multicenter studies such as STAR*D is that current antidepressant medications are effective, but not as effective as one might hope.

Thus, there is a significant need for new treatment mechanisms for depression. On that front, there has been mixed news as well. One of the most exciting new drugs to reach human clinical trials, one that blocks the corticotrophin releasing factor-1 (CRF1) receptor, did not work in a large clinical trial sponsored by Pfizer Pharmaceuticals.

Is it time to abandon CRF1 antagonists as antidepressants or should we revisit these agents from a new perspective? It is in this context that a new paper by Alexandre Surget and colleagues, scheduled for publication in the August 15th issue of Biological Psychiatry, is particularly interesting.

Through prior work, it has been shown that the ability to reverse the stress-related disruption of hippocampal neurogenesis, the ability of the brain to make new nerve cells in adulthood, was important to the actions of our available antidepressant medications. In this new study, the researchers affirm the prior findings, but suggest that two experimental approaches to the treatment of depression, blockade of the CRF1 receptor or the vasopressin-1B (V1B) receptor, retain their efficacy in reversing the impact of stress on behavior even when neurogenesis is disrupted. Catherine Belzung, Ph.D., corresponding author on this article, further explains that “we now report evidence that restoration of the functioning of the stress axis may be the key to how these new antidepressant approaches might work.”

How can one reconcile these interesting research findings in animals with the lack of antidepressant efficacy of a CRF1 receptor antagonist in the Pfizer study? Is this approach simply ineffective in humans or might there be subgroups of patients who might be more likely to respond to a CRF1 antagonist? The Surget et al. data raise the possibility that CRF1 receptor antagonists might be effective in treating stress-related behavioral disturbances even in a context where other antidepressants do not work, perhaps due to disruption of neurogenesis. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “These findings lend weight to the hope that CRF1 antagonists might play a role in the treatment of antidepressant-resistant symptoms of depression or posttraumatic stress disorder.

If so, CRF1 antagonists could fulfill an important unmet need.” He adds that “we do not need another Prozac, but we urgently need to find ways to help the large number of patients who fail to respond adequately to our available treatments.”

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Photoactive bacteria bait may help in fight against MRSA infections
12.10.2018 | Purdue University

nachricht 15 emerging technologies that could reduce global catastrophic biological risks
10.10.2018 | Johns Hopkins Center for Health Security

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Elucidating cuttlefish camouflage

18.10.2018 | Life Sciences

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>