Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential new eye tumor treatment discovered

05.08.2011
New research from a team including several Carnegie scientists demonstrates that a specific small segment of RNA could play a key role in the growth of a type of malignant childhood eye tumor called retinoblastoma.

The tumor is associated with mutations of a protein called Rb, or retinoblastoma protein. Dysfunctional Rb is also involved with other types of cancers, including lung, brain, breast and bone. Their work, which will be the cover story of the August 15th issue of Genes & Development, could result in a new therapeutic target for treating this rare form of cancer and potentially other cancers as well.

MicroRNAs are a short, single strands of genetic material that bind to longer strands of messenger RNA--which is the courier that brings the genetic code from the DNA in the nucleus to the cell's ribosome, where it is translated into protein. This binding activity allows microRNAs to silence the expression of select genes in a targeted manner. Abnormal versions of microRNAs have been implicated in the growth of several types of cancer.

The paper from Carnegie's Karina Conkrite, Maggie Sundby and David MacPherson--as well as authors from other institutions—focuses on a cluster of microRNAs called miR-17~92. Recent research has shown that aberrant versions of this cluster are involved in preventing pre-cancerous cells from dying and allowing them to proliferate into tumors. Previous work has shown that miR-17~92 can be involved in the survival of lymphoma and leukemia cells by reducing the levels of a tumor-suppressing protein called PTEN.

The team's new research shows that miR-17~92 can also be involved in retinoblastoma, although it does not act in the same way, via the PTEN protein, as it does in other types of cancers. Rather, miR-17~92 acts to help cells that lack the tumor-suppressing Rb protein to proliferate.

First the team demonstrated that miR-17~92 is expressed in higher-than-usual quantities in all human retinoblastomas examined and in some mouse retinoblastomas. The authors engineered mice to express high levels of miR-17~92 in their retinas. When coupled with inactivation of Rb family members, expression of miR-17~92 led to extremely rapid and aggressive retinoblastoma. Then they showed that this abundance of miR-17~92 acts to suppress an inhibitor of proliferation, called p21Cip1, which is supposed to compensate for the loss of Rb.

"These findings— which show that miR-17~92 overcomes the cell's attempts to compensate for the loss of Rb—could be similar in other types of cancers," MacPherson said. "This microRNA cluster could represent a new therapeutic target for treating tumors caused by Rb deficiency."

The paper is published today on the journal's website.

David MacPherson | EurekAlert!
Further information:
http://www.ciwemb.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>