Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular Alzheimer's theory may be false trail

17.06.2009
The idea that anti-inflammatory drugs might protect people struggling with dementia from Alzheimer's disease has received a blow with the online release of a study of human brain tissue in Acta Neuropathologica.

Researchers with the McKnight Brain Institute of the University of Florida, in collaboration with scientists at the University of Frankfurt, Germany, discovered that inflammation of microglia -- an abundant cell type that plays an important supporting role in the brain -- does not appear to be associated with dementia in Alzheimer's disease.

The finding supports recent clinical trial results that indicate anti-inflammatory drugs are not effective at fighting dementia in patients with Alzheimer's disease, which affects about 5.3 million Americans.

"For almost 20 years now, it's been claimed that brain inflammation contributes to the development of Alzheimer's disease dementia, and based on that claim, numerous clinical trials with anti-inflammatory drugs have been conducted. They have been unsuccessful," said Wolfgang Streit, a professor of neuroscience at the College of Medicine. "In the current paper we have shown that the brain's immune system, made up of microglia, is not activated in the brains of Alzheimer's patients, as would be the case if there were inflammation. Instead, microglia are degenerating. We claim that a loss of microglial cells contributes to the loss of neurons, and thus to the development of dementia."

Microglial cells are a subset of a very large population of brain cells known as glial cells. Neurons are the workhorse cells of the brain, enabling thought and movement, but glia are their faithful sidekicks, providing physical and nutritional support.

Glial cells, which outnumber neurons 10-to-1, are at the heart of a popular explanation for Alzheimer's disease that suggests protein fragments called beta amyloid -- Abeta for short -- clump together in the spaces between brain cells, causing memory loss and dementia. Inflammation theories suggest that microglia become "activated" and mount an immune response to these protein clumps, and instead of being helpful, a toxic release of chemicals occurs, worsening the disease effects.

However, Streit's high-resolution observations did not find evidence that Abeta activates, or inflames, human microglia cells. Nor did researchers find evidence that inflammation is to blame for brain cell death.

"This paper potentially represents a paradigm shift in the way we look at Alzheimer's disease," said Mark A. Smith, a professor of pathology at Case Western Reserve University and editor-in-chief of the Journal of Alzheimer's Disease. "The study goes against the very popular idea of neuro-inflammation; instead, the idea that microglia are senescent is consistent with a number of features of the disease.

"The research makes a very good case that these cells are subject to aging," said Smith, who did not participate in the study. "These cells were thought to be activated (against Alzheimer's), but this paper makes a strong case that they are not. The study has taken a novel approach that has led to a novel insight."

Using a commercially available antibody, Streit for the first time created a marker for microglial cells in human brain specimens that had been in chemical storage. The specimens were from 19 people with varying degrees of Alzheimer's, ranging from severe to none at all. Two of the samples were from Down syndrome patients, who are known to develop Alzheimer's pathology in middle age.

When researchers examined these cells alongside neurons under a high-resolution microscope, they found that -- unless an infection had occurred elsewhere in the body -- microglial cells from Alzheimer's patients were not distinctly larger or unusually shaped, which would have been the case had they been inflamed.

"What I expected to see is activated microglia right next to dying neurons," Streit said. "That is what I did not find. What I propose is glia are dying, and the neurons lose support. We now need to find out what caused glia to degenerate. Rather than trying to find ways to inhibit microglia with anti-inflammatory drugs, we need to find ways to keep them alive and strong. It's a whole new field."

The microglial cells had a tangled, fragmented appearance, similar to neurons in the throes of Alzheimer's disease or -- old age.

"These cells are breaking into pieces," said Streit, who collaborated with Alzheimer's researcher Dr. Heiko Braak, of the Institute for Clinical Neuroanatomy in Frankfurt. "They are on their way out. For the first time, we are proving that microglial cells are subject to aging and may undergo degeneration, and that the loss of these cells precedes the loss of neurons. Research has been so focused on finding activated microglia, no one considered that these cells were degenerating and neurons lost support."

The work was supported by the National Institutes of Health, the German Research Council and the Evelyn F. and William L. McKnight Brain Institute.

Alzheimer's disease is the sixth leading cause of death in the United States and the fifth leading cause of death for Americans 65 and older, according to the Alzheimer's Association. The association estimates Alzheimer's and other dementias cost Medicare, Medicaid and businesses a total of $148 billion annually.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Hepatitis: liver failure attributable to compromised blood supply
19.12.2018 | Technische Universität München

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>