Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt develops biodegradable artery graft to enhance bypass surgeries

25.06.2012
Pitt's cell-free, biodegradable artery graft results in a regenerated artery in 90 days, leaving behind no trace of synthetic graft materials in the body

With the University of Pittsburgh's development of a cell-free, biodegradable artery graft comes a potentially transformative change in coronary artery bypass surgeries: Within 90 days after surgery, the patient will have a regenerated artery with no trace of synthetic graft materials left in the body.

Research published online June 24 in Nature Medicine highlights work led by principal investigator Yadong Wang, a professor in Pitt's Swanson School of Engineering and School of Medicine's Department of Surgery, who designed grafts that fully harness the body's regenerative capacity. This new approach is a philosophical shift from the predominant cell-centered approaches in tissue engineering of blood vessels.

"The host site, the artery in this case, is an excellent source of cells and provides a very efficient growth environment," said Wang. "This is what inspired us to skip the cell culture altogether and create these cell-free synthetic grafts."

Wang and fellow researchers, Wei Wu, a former Pitt postdoctoral associate (now a postdoctoral associate at Yale University), and Robert Allen, a PhD student in bioengineering, designed the graft with three properties in mind. First, they chose a graft material—an elastic polymer called PGS—that is resorbed quickly by the body. Then, they examined graft porosity and selected parameters that allow immediate cell infiltration. Wang's team borrowed a procedure developed by another team of Pitt researchers—David Vorp, professor of bioengineering and surgery, and William R. Wagner, interim director of the University's McGowan Institute for Regenerative Medicine and a Pitt professor of surgery, bioengineering, and chemical engineering—wrapping the vascular graft with a fibrous sheath to trap the cells. Finally, Wang and his fellow researchers wanted a coating for the grafts that would reduces blood clotting and bind many growth factors, so they used heparin, a molecule that does just that.

"The results were porous grafts that are suturable," said Wang. "And the rapid remodeling of the grafts led to strong and compliant new arteries. The extent of the changes in the grafts that occurred in just 90 days was remarkable."

Wang and his colleagues made grafts as small as 1 mm in diameter and monitored the graft's transformation in vivo for three months. Because the graft was highly porous, cells were easily able to penetrate the graft wall, and mononuclear cells occupied many of the pores within three days. Within 14 days, smooth muscle cells—an important blood vessel builder—appeared. At 28 days, cells were distributed more evenly throughout the graft. At 90 days, most inflammatory cells were gone, which correlated with the disappearance of the graft materials. The artery was regenerated in situ and pulsed in sync with the host. Furthermore, the composition and properties of the new arteries are nearly the same as native arteries.

"This report is the first that shows a nearly complete transformation of a synthetic plastic tube to a new host artery with excellent integration within three months," said Wang. "Most likely, the amount of time it takes to regenerate an artery can be further shortened as we refine the system."

Current approaches toward tissue-engineered arteries require a long production cycle because of the required cell culture steps. The newly developed graft is made in a few days, stores in a dry pouch at ambient temperature, and is readily available off the shelf. The ease of use and storage are similar to the conventional Dacron® grafts.

The project was funded by the National Heart, Lung, and Blood Institute, part of the National Institutes of Health.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Health and Medicine:

nachricht UC San Diego cancer scientists identify new drug target for multiple tumor types
12.07.2019 | University of California - San Diego

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>