Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New piece found in colorectal cancer puzzle

26.06.2009
Prostasin, a relatively unknown protease enzyme expressed in most epithelial cells, may play a role in the genesis of colorectal cancer. Researchers writing in the open access journal BMC Cancer have associated a reduction in the expression of inhibitors of the enzyme with malignant cellular behavior.

Lotte Vogel, from the University of Copenhagen, worked with a team of Danish and Norwegian researchers to investigate levels of prostasin and its inhibitors in colorectal tissue samples from 222 patients and 23 controls.

They found that the mRNA levels of the inhibitor of prostasin, PN-1, increased at both the transition between normal tissue and mild/moderate dysplasia and again at the transition between severe dysplasia and colorectal cancer.

According to Vogel, "It has previously been shown that overexpression of prostasin in mammary and prostate cancer cells reduces the invasive properties of cancer cells and that high prostasin expression in gastric tumours is associated with longer survival. In what may be support for this trend, our data shows that elevated mRNA levels for prostasin's inhibitor, PN-1, coincides with the acquisition of malignant properties in colorectal tissue".

The enzymatic activity of prostasin is almost certainly influenced by levels of inhibitors other than PN1, and PN1 itself is known to inhibit many other enzymes. This complex web of interactions between relevant proteases and their inhibitors makes firm conclusions difficult to draw. As Vogel writes, "Future studies are required to clarify whether down-regulation of prostasin activity via up regulation of PN-1 is causing the malignant progression or if it is a consequence of it".

1. Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis
Joanna Selzer-Plon, Jette Bornholdt, Stine Friis, Hanne C Bisgaard, Inger M. B. Lothe, Kjell M. Tveit, Elin H Kure, Ulla Vogel and Lotte K. Vogel

BMC Cancer (in press)

2. BMC Cancer is an open access journal publishing original peer-reviewed research articles in all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials. BMC Cancer (ISSN 1471-2407) is indexed/tracked/covered by PubMed, MEDLINE, CAS, Scopus, EMBASE, Current Contents, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>