Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physician-scientist proves stem cells heal lungs of newborn animals

30.11.2009
Study anticipated to benefit premature babies

Dr. Bernard Thébaud lives in two very different worlds. As a specialist in the Stollery Children's Hospital's Neonatal Intensive Care Unit at the Royal Alexandra Hospital, he cares for tiny babies, many of whom struggle for breath after being born weeks before they are due.

Across town, in his laboratory in the Faculty of Medicine & Dentistry at the University of Alberta, Dr. Thébaud dons a lab coat and peers into a microscope to examine the precise effect of stem cells on the lungs.

Today, with his scientific research being published in the American Journal of Respiratory and Critical Care Medicine, Dr. Thébaud has made a significant leap to bridge the gap between those two worlds.

An international team of scientists led by Dr. Thébaud has demonstrated for the first time that stem cells protect and repair the lungs of newborn rats. "The really exciting thing that we discovered was that stem cells are like little factories, pumping out healing factors," says Dr. Thébaud, an Alberta Heritage Foundation for Medical Research Clinical Scholar. "That healing liquid seems to boost the power of the healthy lung cells and helps them to repair the lungs."

In this study, Thébaud's team simulated the conditions of prematurity – giving the newborn rats oxygen. The scientists then took stem cells, derived from bone marrow, and injected them into the rats' airways. Two weeks later, the rats treated with stem cells were able to run twice as far, and had better survival rates. When Thébaud's team looked at the lungs, they found the stem cells had repaired the lungs, and prevented further damage.

"I want to congratulate Dr. Thébaud and his team. This research offers real hope for a new treatment for babies with chronic lung disease," says Dr. Roberta Ballard, professor of pediatrics, University of California, San Francisco. "In a few short years, I anticipate we will be able to take these findings and begin clinical trials with premature babies."

"The dilemma we face with these tiny babies is a serious one. When they are born too early, they simply cannot breathe on their own. To save the babies' lives, we put them on a ventilator and give them oxygen, leaving many of them with chronic lung disease," says Dr. Thébaud. "Before the next decade is out I want to put a stop to this devastating disease."

The research team includes physicians and scientists from Edmonton, Alberta, Tours, France, Chicago, Illinois, and Montreal, Quebec.

The team is now investigating the long-term safety of using stem cells as a lung therapy. The scientists are examining rats at 3 months, and 6 months after treatment, studying the lungs, and checking their organs to rule out any risk of cancer. Dr. Thébaud's team is also exploring whether human cord blood is a better option than bone marrow stem cells in treating lung disease.

"We are also studying closely the healing liquid produced by the stem cells," says Dr. Thébaud. "If that liquid can be used on its own to grow and repair the lungs, that might make the injection of stem cells unnecessary."

Dr. Thébaud is a neonatal specialist for Alberta Health Services, and a Canada Research Chair in Translational Lung and Vascular Development Biology. His research is supported by the AHFMR, the Canada Foundation for Innovation, the Canadian Institutes of Health Research, the Canadian Stem Cell Network and the Stollery Children's Hospital Foundation.

The study, Airway Delivery of Mesenchymal Stem Cells prevents Arrested Alveolar Growth In Neonatal Lung Injury In Rats, is available at http://ajrccm.atsjournals.org/current.shtml

Still photos and video content (including a premature baby and her parents) are available for download at www.ahfmr.ab.ca

Media please contact Karen Thomas, AHFMR Media Specialist, 1.877.423.5727 x 225, 1.403.651.1112 (cell), Karen.thomas@ahfmr.ab.ca

For more information on this research contact Dr. Bernard Thébaud at bthebaud@ualberta.ca

Background:

Alberta has the highest rate of premature births in Canada with a rate of 9.2% compared to the rest of Canada at 7.8%.

Babies who are born extremely premature – before 28 weeks – cannot breathe on their own. In order to help the babies' lungs to develop, neonatal doctors give them oxygen and drugs to help them breathe.

These treatments contribute to a chronic lung disease known as Bronchopulmonary dysplasia (BPD). At present there is no treatment to heal the lungs of these premature babies.

50% of babies born before 28 weeks will get chronic lung disease. Case studies have shown that as these babies grow up, they continue to struggle with lung disease, coping with reduced lung function and early aging of their lungs.

Karen Thomas | EurekAlert!
Further information:
http://www.ahfmr.ab.ca

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>