Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Perspectives for Patients suffering from Brain Injury

04.12.2013
The new findings from research on metabolic activities in inflamed nerve tissue carried out by Dr Matteo Bergami from the CECAD Excellence Cluster at the University of Cologne in collaboration with an international team of scientists generate new perspectives for many patients suffering from traumatic brain injury.

Their results open the path to a deeper understanding of the processes that take place in damaged nerve cells, particularly in astrocytes. This study now shows that inflammation can lead to changes in astrocyte mitochondria, causing them to fragment.

Joining their efforts, a team of researchers from the Excellence Clusters of Cologne (CECAD) and Munich (LMU), together with the University of Bologna (Italy), can now offer new insights into the metabolic processes taking place in damaged brain tissue. Their research has focused on astrocytes, the cells in the central nervous system that regulate energy metabolism and synapse functioning.

Given their important physiological role in the healthy brain, researchers have addressed how astrocytes may change their metabolic activity in response to nerve tissue inflammation, a condition caused by acute injury, stroke, or neurodegenerative diseases. This may reveal to be an essential aspect of most brain diseases as a failure of astrocyte reactivity during an inflammatory process may worsen the pathology and eventually accelerate neurodegeneration.

To date it has been assumed that nervous system cells react uniformly to acute brain damage such as that caused by traumatic injury. However, Dr Bergami and his team of researchers discovered that astrocytes within different zones of the lesion show different forms of reactivity in response to inflammatory insults. This reactivity especially affects mitochondria, the powerhouse of the cells.

The function of mitochondria is strictly dependent upon two types of dynamics: fusion and fission. These two reactions are key for maintaining mitochondrial architecture and function. Faulty regulation of these mitochondrial dynamics results in defective mitochondria, which can lead to cellular aging and trigger many neurodegenerative diseases.

The researchers were able to show that astrocytic mitochondria within the core of the damaged, highly proinflammatory brain area, demonstrate an accelerated tendency towards fission, leading to their fragmentation. In the surrounding zones, mitochondria show an increase in fusion.

The researchers also succeeded in discovering a key metabolic process regulating astrocyte mitochondrial function: they were able to show that autophagy, a process involving the self-digestion of components in the cell, is critical to maintain mitochondrial structure. In contrast to neurons, astrocytes survive surprisingly well to acute inflammation. The new study reveals that autophagy is the major mechanism conferring this resistance. When autophagy is ablated astrocytes loose their capability to regenerate their network which ultimately leads to astrocyte cell death.

Although the reorganisation of metabolic pathways triggered by inflammation goes beyond the influence of mitochondria, these research findings clearly demonstrate that mitochondrial function is absolutely essential to astrocyte survival. Additionally they provide new insights for our understanding of how brain cells react to inflammation. Further characterization of these metabolic pathways may hopefully enable the researchers to protect neurons from dying during acute or chronic neuroinflammation. This will potentially allow for the development of new approaches aimed at helping patients exposed to brain injury or stroke, in order to preserve brain function and improving the patient´s quality of life.

Contact:
Dr Matteo Bergami
CECAD Cluster of Excellence at the University of Cologne
Tel. +49 (0) 221 478 841 71
matteo.bergami@uk-koeln.de
Astrid Bergmeister
Head of CECAD PR & Marketing
Tel. + 49 (0) 221-478-84043
astrid.bergmeister@uk-koeln.de

Astrid Bergmeister | idw
Further information:
http://www.cecad.uni-koeln.de
http://www.uk-koeln.de

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>