Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodic heart rate decelerations in premature infants

23.04.2010
A normal healthy heart beats at a variable rate with extraordinarily complex fluctuations across a wide range of time scales. Reduced complexity of heart rate has both clinical and dynamical significance – it may provide warning of impending illness, or clues about the dynamics of the heart's pacemaking system.

In work published in the April issue of Experimental Biology and Medicine, simple and interesting heart rate dynamics in premature human infants is reported – reversible transitions to large-amplitude periodic oscillations – and the appearance and disappearance of these periodic oscillations is described by a simple mathematical model, called a Hopf bifurcation.

The work was carried out by Abigail Flower, as part of her PhD thesis in biophysics, working together with Randall Moorman and Douglas Lake at the University of Virginia, and John Delos, at the College of William and Mary.

Dr. Moorman explained the background of this research. "Two periodic cycles of heart rate have been known for over a century. One is respiratory sinus arrhythmia, the coupling of heart rate to breathing (our heart rate increases when we inhale and decreases when we exhale). Another cycle of heart rate is correlated with a cycle of blood pressure called Mayer waves. Abby's work is quite different".

Dr. Flower examines a different and previously uncharacterized heart rate cycle involving large decelerations of heart rates of infants in neonatal intensive care units (NICU's). A deceleration is a decrease in heart rate followed by a return to the base rate. She devised a heart rate deceleration detector using a pattern-matching algorithm inspired by wavelet theory, and applied it to a large clinical database. She found that large decelerations are common, and similar in shape among infants; they are usually isolated, but they sometimes appear in clusters. In rare cases a deceleration appears every fifteen seconds for epochs as long as two days. These long periodic sequences of decelerations occur spontaneously – they were not induced by controlled means – so they must be a normal or pathological mode of regular dynamics in the human cardiac pacemaking system near the time of birth.

This phenomenon is interesting from both clinical and dynamical perspectives. Periodic decelerations are dynamically interesting because they show that the control system of the heart rate can go into a previously uncharacterized oscillatory mode. Presently there is no physiological explanation for this phenomenon. Dr. Flower developed a mathematical theory, based upon Hopf bifurcation theory, which describes the abrupt beginnings and endings of clusters of periodic decelerations. A Hopf bifurcation is the most general theory describing how a system can change from stable to oscillatory. Such bifurcations occur for example in laser systems, oscillatory chemical reactions, predator-prey dynamics, and in the Hodgkin-Huxley model of the firing of nerve cells.

Dr. Moorman said "These observations and computations therefore provide a new point of contact with mathematical models of the heart rate control system. The group is presently investigating models of the control loops connecting heart rate with respiration and blood pressure to see whether the available models show such behavior."

Heart rate decelerations, whether periodic or not, are clinically interesting because clusters of decelerations in neonates are statistically correlated with impending sepsis, a severe bacterial infection of the bloodstream. Clusters of decelerations may begin to appear as many as 24 hours before any clinical signs of illness, so deceleration detection can provide early warning of bacterial infection in this vulnerable population.

"One of the pleasures of this kind of work is its interdisciplinary nature" said Dr. Delos. "As an undergraduate, Abby did a senior project with me in physics, studying the hydrogen atom. Then a few years ago she emailed me and asked if I would like to participate in this project, working with her and Randall, a cardiologist, and Doug, a statistician. Since then I've been like a kid in a candy store, absorbing all the knowledge I could, and working intensely – maybe I should say playing intensely – trying to make sense of the data. People have been using electronic methods to monitor the heart for over a century. Now Abby has developed new, continuous, noninvasive, purely electronic methods to monitor infants for infectious disease. It is a delightful result."

Related methods of clinical monitoring, using noninvasive electronic observations and advanced mathematical tools to monitor for infectious disease, are now in use in more than 1000 NICU beds, and a large randomized clinical trial is underway to test the effect on infants' outcomes.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "In this outstanding interdisciplinary study Dr. Flowers has reported interesting heart rate dynamics in premature human infants. This research team from the University of Virginia and the College of William and Mary has elegantly described reversible transitions to large-amplitude periodic oscillations by a mathematical model based upon Hopf bifurcation theory."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit www.ebmonline.org.

Dr. John B. Delos | EurekAlert!
Further information:
http://www.ebmonline.org
http://www.sebm.org

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>