Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn study identifies new malaria parasites in wild bonobos

21.11.2017

New addition to the plethora of parasite species recently discovered in African apes informs human malaria biology

Malaria parasites, although widespread among wild chimpanzees and gorillas, have not been detected in bonobos, a chimp cousin. Reasoning that previous studies may have missed infected bonobo populations, a team led by Beatrice Hahn, MD, a professor of Microbiology in the Perelman School of Medicine at the University of Pennsylvania, conducted a more extensive survey, increasing both the number and places they sampled wild bonobo populations. Although they saw evidence of a new malaria species in bonobos, it was limited to one small area of their range. The team published their findings in Nature Communications this week.


A female bonobo of the Hali-Hali community in the Kokolopori Bonobo Reserve (Democratic Republic of the Congo) relaxes on a branch (members of the Hali-Hali community contributed fecal samples for this study).

Credit: Alexander Georgiev

Hahn's lab studies ape relatives of human pathogens such as HIV and malaria to gain a greater insight into the microbes that cause these diseases in humans. African non-human primates are highly endangered and require non-invasive sampling methods to gain insight into their health. Hahn's team has perfected a sensitive assay that allows them to obtain genetic information of malaria parasites from ape fecal matter gathered from the forest floor.

"Not finding any evidence of malaria in wild bonobos just didn't make sense, given that captive bonobos are susceptible to this infection," Hahn said. "We look for biological loopholes to potentially exploit the life history of these pathogens to better understand how they cross over to humans."

According to the World Malaria Report, there were 214 million cases of malaria globally in 2015 and 438,000 deaths from the disease - down 37 and 60 percent, respectively, since 2000. Still, more work needs to be done to combat the parasite, especially since the barriers that prevent cross-species transmission are not well understood.

Hahn's team found that bonobos are, in fact, susceptible to a wide variety of Plasmodium malaria parasites, including a previously unknown Laverania species that is specific to bonobos. (Laverania parasites are close relatives of the human malaria parasite P. falciparum.) Wild bonobos are found in the forests of central Africa, south of the Congo River in the Democratic Republic of Congo (DRC). However, natural infection was only detected in the eastern-most part of the bonobo range.

"It seems likely that these parasites co-evolved with African apes, suggesting that the ancestors of bonobos were infected, and implying that most wild-living communities of bonobos have somehow lost their malaria parasites," said coauthor Paul Sharp, PhD, an evolutionary biologist from the University of Edinburgh.

The researchers tested 1,556 fecal samples from 11 field sites and identified a high prevalence of Laverania infections in an area called Tshuapa-Lomami-Lualaba (TL2), a remote region in the eastern DRC.

Until recently, there were six known ape Laverania species that exhibited strict host specificity (association with a single host species) in wild populations - three in chimpanzees and three in western gorillas. In 2010, Hahn and colleagues discovered that gorillas were the origin of the human malaria parasite Plasmodium falciparum, the most prevalent and lethal of the malaria parasites that infect people.

One surprising finding from the current study was that TL2 bonobos harbor P. gaboni, which was previously only found in chimpanzees, as well as a new Laverania species, termed P. lomamiensis, in recognition of the recently established Lomami National Park. The team tried to narrow down the reasons for the absence of Plasmodium from most bonobo field sites. However, neither parasite seasonality nor bonobo population structure could explain what they observed.

"For now, the geographic restriction of bonobo Plasmodium infection remains a mystery," said co-first author Weimin Liu, PhD, a senior research investigator in Hahn's lab.

"We have yet to identify the causes," said co-first author Scott Sherrill-Mix, PhD, a Hahn lab postdoctoral fellow. "We looked at what plants bonobos eat and what types of bacteria make up their gut microbiome, but these could not explain the absence of Plasmodium from most of the bonobo sites. From this, we suspect that factors that influence parasite transmission are involved."

As scientists consider how malaria can be eliminated from the human population, Hahn notes that it is important to understand more about these ape parasites, what factors affect their distribution and host-specificity, and whether there are circumstances under which any of them could again jump into humans. Hahn knows of what she speaks. In 2006, her lab and collaborators confirmed that the virus that is responsible for the AIDS pandemic in humans is of chimpanzee origin.

###

This work was supported by grants from the National Institutes of Health (R01 AI 091595, R01 AI 058715, R01 AI 120810, R37 AI 050529, T32 AI 007532, T32 AI 007632, P30 AI 045008), the Agence Nationale de Recherche sur le Sida (ANRS 12125/12182/12255), the Agence Nationale de Recherche (Programme Blanc, Sciences de la Vie, de la Santé et des Ecosystémes and ANR 11 BSV3 021 01, Projet PRIMAL), Harvard University, and the Arthur L. Greene Fund.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $6.7 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2016 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2016, Penn Medicine provided $393 million to benefit our community.

Karen Kreeger | EurekAlert!

Further reports about: Chimpanzees Plasmodium bonobo human malaria malaria malaria parasite parasite

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>