Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Find Neural Signature of ‘Mental Time Travel’

19.07.2011
Almost everyone has experienced one memory triggering another, but explanations for that phenomenon have proved elusive. Now, University of Pennsylvania researchers have provided the first neurobiological evidence that memories formed in the same context become linked, the foundation of the theory of episodic memory.

The research was conducted by professor Michael Kahana of the Department of Psychology in the School of Arts and Sciences and graduate student Jeremy R. Manning, of the Neuroscience Graduate Group in Penn’s Perelman School of Medicine. They collaborated with Gordon Baltuch and Brian Litt of the departments of Neurology and Psychology at the medical school and Sean M. Polyn of Vanderbilt University.

Their research was published in the journal Proceedings of the National Academy of Sciences.

“Theories of episodic memory suggest that when I remember an event, I retrieve its earlier context and make it part of my present context,” Kahana said. “When I remember my grandmother, for example, I pull back all sorts of associations of a different time and place in my life; I’m also remembering living in Detroit and her Hungarian cooking. It’s like mental time travel. I jump back in time to the past, but I'm still grounded in the present.”

To investigate the neurobiological evidence for this theory, the Penn team combined a centuries-old psychological research technique — having subjects memorize and recall a list of unrelated words — with precise brain activity data that can only be acquired via neurosurgery.

The study’s participants were all epilepsy patients who had between 50 and 150 electrodes implanted throughout their brains. This was in an effort to pinpoint the region of the brain where their seizures originated. Because doctors had to wait for seizures to naturally occur in order to study them, the patients lived with the implanted electrodes for a period of weeks.

“We can do direct brain recordings in monkeys or rats, but with humans one can only obtain these recordings when neurosurgical patients, who require implanted electrodes for seizure mapping, volunteer to participate in memory experiments,” Kahana said. “With these recordings, we can relate what happens in the memory experiment on a millisecond-by-millisecond basis to what's changing in the brain.”

The memory experiment consisted of patients memorizing lists of 15 unrelated words. After seeing a list of the words in sequence, the subjects were distracted by doing simple arithmetic problems. They were then asked to recall as many words as they could in any order. Their implanted electrodes measured their brain activity at each step, and each subject read and recalled dozens of lists to ensure reliable data.

“By examining the patterns of brain activity recorded from the implanted electrodes,” Manning said, “we can measure when the brain’s activity is similar to a previously recorded pattern. When a patient recalls a word, their brain activity is similar to when they studied the same word. In addition, the patterns at recall contained traces of other words that were studied prior to the recalled word.”

“What seems to be happening is that when patients recall a word, they bring back not only the thoughts associated with the word itself but also remnants of thoughts associated with other words they studied nearby in time,” he said.

The findings provide a brain-based explanation of a memory phenomenon that people experience every day.

“This is why two friends you met at different points in your life can become linked in your memory,” Kahana said. “Along your autobiographical timeline, contextual associations will exist at every time scale, from experiences that take place over the course of years to experiences that take place over the course of minutes, like studying words on a list.”

The research was supported by the National Institutes of Mental Health and the Dana Foundation.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht New way to target advanced breast cancers
24.09.2018 | Jackson Laboratory

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>