Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers find Epstein Barr-like virus infects and may cause cancer in dogs

13.03.2012
More than 90 percent of humans have antibodies to the Epstein Barr virus. Best known for causing mononucleosis, or "the kissing disease," the virus has also been implicated in more serious conditions, including Hodgkin's, non-Hodgkin's and Burkitt's lymphomas. Yet little is known about exactly how EBV triggers these diseases.

Now a team of researchers from the University of Pennsylvania School of Veterinary Medicine and Penn's Perelman School of Medicine has the first evidence that an Epstein Barr-like virus can infect and may also be responsible for causing lymphomas in man's best friend.

The findings suggest that domestic dogs possess a similar biology to humans with respect to EBV infection. That could allow scientists to study dogs to help uncover the mechanisms by which EBV leads to cancer in certain people.

"There are no large-animal spontaneous models of EBV infection and virus-associated disease, and most studies investigating viral disease are performed in non-human primates, which are very expensive," said Nicola Mason, senior author of the study and an assistant professor of medicine and pathobiology at Penn Vet. "Discovering that dogs can get infected with this virus like people do may provide us with a long-sought-after model for EBV-associated disease."

Mason's team at Penn Vet included Shih-Hung Huang, Philip Kozak, Jessica Kim, George Habineza-Ndikuyeze, Charles Meade, Anita Gaurnier-Hausser and Reema Patel. The team worked closely with Erle Robertson, professor of microbiology at the Perelman School of Medicine.

Their work was published online March 8 in the journal Virology.

In humans, the Epstein Barr virus infects B cells. After an acute phase of infection, of which many people are not even aware, the virus goes into a latent phase. Most people show no symptoms during this phase, but, in some, EBV promotes unnatural growth of B cells, which contributes to the development of lymphoma.

Meanwhile, dogs develop lymphomas that share some characteristics with the human equivalents. These conditions are relatively common in certain breeds. In golden retrievers, for instance, one out of every eight dogs develops lymphoma.

Yet, "the paradigm up until now was that EBV only infects humans," Mason said. "It is an extremely successful virus, and most people are infected. Since humans and domestic dogs have cohabited for around 15,000 years, we hypothesized that the virus may have adapted to another host. "

To search for evidence of infection, Mason and colleagues obtained samples of blood from client-owned dogs of various breeds brought to Penn Vet for care. In 48 dogs with lymphoma and 41 without the disease, the researchers first looked to see if the pets had antibodies against proteins specific to the EBV capsid, the protein shell of the virus. The test is nearly identical to one that physicians use to detect exposure to EBV in humans.

The researchers observed that eight of the dogs with lymphoma and three of those without it had high levels of antibodies against EBV proteins, indicating that a portion of the dogs had been exposed to a virus very similar to EBV.

While the presence of antibodies confirms that a dog has been exposed to a virus, the team wanted to know whether the virus had a direct association with the tumors in dogs with lymphoma. Finding viral elements, including DNA, within lymphomas in humans is an indication that the tumor is associated with the virus, therefore Penn researchers looked to see if they could find virus in the dog tumors.

Using the polymerase chain reaction, which amplifies specific DNA sequences, the researchers analyzed lymph nodes of dogs with and without B cell lymphoma. In two dogs with lymphoma, they were able to identify a portion of DNA very similar to a sequence in EBV. They found no evidence of the same DNA in the healthy dogs.

They repeated similar tests with other stretches of EBV DNA, finding evidence of EBV-like DNA in the cancer cells of three of nine dogs with lymphoma. They also identified a virus-associated protein in the malignant lymph nodes of two of nine dogs with lymphoma.

Finally, examining cancerous B cells under an electron microscope revealed what appeared to be viral particles, similar to what what has been seen in the tumor cells of humans with EBV-linked lymphomas.

Taken together, the researchers' discoveries indicate that some dogs are naturally infected with a virus similar or identical to EBV and that, as in humans, the virus appears linked in certain cases with canine lymphomas.

That such a large percentage of humans are exposed to EBV and yet only a small fraction develop cancers indicates that there may be a genetic component to EBV-associated cancer susceptibility.

"With additional studies within certain breeds of dog," Mason said, "we hope to provide insights into genetic factors that may predispose to virus associated lymphoma. Furthermore, this spontaneous dog model may help us evaluate new treatments for EBV-related lymphomas or investigate strategies to prevent those cancers from developing in the first place."

The study was supported by the University of Pennsylvania's Veterinary Center for Infectious Disease, the Abramson Family Cancer Research Institute at the University of Pennsylvania and the National Cancer Institute.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>