Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some patients with treatment-resistant colorectal cancers may have a new option

03.06.2013
A subset of colorectal cancers responds to anti-epidermal growth factor receptor (anti-EGFR) therapies, but develops resistance within months.

Among cancers that develop resistance to anti-EGFR therapy, some showed overexpression of a gene called MET, according to a study published in the June issue of Cancer Discovery, a journal of the American Association for Cancer Research. Preliminary data published in this study showed human tumors with MET amplification, grown in mice, responded to MET inhibitor drugs.

The MET gene is known to be amplified in about 10 percent of colorectal cancers, and is associated with worse prognosis.

The paper was also presented as part of an oral session at the 2013 American Society of Clinical Oncology Annual Meeting.

"Our studies provide evidence that colorectal cancer resistance to anti-EGFR therapies can be driven by MET gene amplification," said Alberto Bardelli, Ph.D., associate professor in the Department of Oncology at the University of Torino in Italy. "But what is more exciting is that we were able to detect these amplifications in the blood."

A subset of metastatic colorectal cancers responds to the anti-EGFR drugs cetuximab and panitumumab, but almost always develops resistance within several months of the initiation of therapy, according to Bardelli. Mutations in genes related to EGFR signaling, including KRAS, BRAF and NRAS, account for about 60 percent of the cases that develop resistance; the cause of resistance in tumors without these mutations is unknown.

"Unfortunately, patients whose tumors recur after anti-EGFR therapy are out of further options currently," said Bardelli. "The possibility that we can identify those who have MET amplification using a blood test is exciting because they might be treated with MET inhibitors."

Bardelli and his colleagues analyzed tumors from seven patients who developed resistance subsequent to anti-EGFR therapy, and identified three who did not have the previously known mutations. Using next-generation sequencing, they demonstrated amplification of the MET gene in these three tumor samples.

Blood samples collected at regular intervals during treatment with anti-EGFR therapy until relapse were available for two of the three patients. The researchers were able to detect MET amplification in the blood, and they demonstrated it occurred prior to relapse. The ability to detect MET amplification in blood provides a noninvasive, highly sensitive method for monitoring and predicting drug resistance and tumor recurrence, according to Bardelli.

Using "xenopatients" — patient-derived, drug-resistant colorectal cancers grafted and grown in mice — the researchers identified a novel, biologically distinct subset of tumors that were resistant to anti-EGFR drugs and did not have alterations in KRAS, BRAF or NRAS but carried MET amplification. The researchers further confirmed the overexpression of the MET gene and MET protein in these tumors using special techniques called fluorescent in situ hybridization and immunohistochemistry.

As a next step, the researchers tested the efficacy of the clinically approved MET inhibitor crizotinib in two xenopatients. According to Bardelli, a MET inhibitor in combination with an anti-EGFR drug caused maximum antitumor activity and sustained response in both xenopatients. He added that this provided proof of concept that MET inhibitors, alone or in combination with anti-EGFR therapies, offer novel therapeutic opportunities.

Follow the AACR on Twitter: @aacr

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

Further reports about: AACR Association BRAF Cancer KRAS NRAS Oncology cancer research colorectal cancer rectal cancer

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>