Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pass the lycopene: Scientist can protect supplements inside food

27.03.2012
A Purdue University food scientist has developed a way to encase nutritional supplements in food-based products so that one day consumers might be able to sprinkle vitamins, antioxidants and other beneficial compounds right onto their meals.
Srinivas Janaswamy, a research assistant professor of food science, said many of the nutraceuticals, or nutritional supplements, added to foods today are not structurally stable. Heat, light, oxygen and other external factors could degrade the supplements, rendering them ineffective.

"There are many methods for adding nutraceuticals to foods, but the one thing they all have in common is instability due to non-rigid structures," said Janaswamy, whose findings were published in the journal Food & Function.

Nutraceuticals such as beta-carotene, lycopene, resveratrol and vitamins are thought to play significant roles in treating or preventing disease. Resveratrol, for example, is found in red grape products and is believed to help prevent cancer and benefit cardiovascular health.

Janaswamy's method involves creating crystalline-like fibers that embed the nutraceuticals, protect them from external influences and prevent degradation.
"Once the nutraceutical is enveloped, it is thermally protected," Janaswamy said. "Anything of interest can be used, even drug molecules, vitamins or hormones."

Janaswamy used iota-carrageenan, a long-chain carbohydrate, to encapsulate curcumin, the principle compound found in the spice turmeric, which is considered to be effective against inflammation, cancer and obesity. Iota-carrageenan is amorphous, meaning it lacks a defined structural arrangement. It was stretched, forming well-oriented crystalline fibers, which then gained more structural organization.

In the fiber network, iota-carrageenan maintains a stable double-helical structure with small pockets between the helices that contain water molecules. Janaswamy replaced these water pockets with curcumin, which was then protected by the sturdy iota-carrageenan network.

Janaswamy envisions that the encapsulated fibers could then be chopped into small particles. Diners could reach for the resveratrol or curcumin the same as they might salt or pepper.

Iota-carrageenan and other polysaccharide carbohydrates have GRAS – generally recognized as safe - status with the U.S. Department of Agriculture.
Janaswamy has a few hurdles to overcome before his nutraceutical fibers are ready for dinner tables. He is working on delaying the release of the embedded compounds once consumed, as their current release time is about 30 minutes. Janaswamy said the time would need to be lengthened to about three hours to ensure that the nutraceuticals reach the intestines, where they can be properly absorbed. Also, Janaswamy is working to increase the amount of nutraceutical that can be loaded into the fibers.

Susanne R. Youngren, a former Purdue undergraduate student and current doctoral student at the University of Hawaii at Hilo, collaborated with Janaswamy on this research. Purdue's Whistler Center for Carbohydrate Research provided funding.
Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Source: Srinivas Janaswamy, 765-494-4914, janaswam@purdue.ed
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>