Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parkinson's disease involves degeneration of the olfactory system

28.09.2017

Scientists discover anatomical link for the loss of smell in Parkinson’s disease

The first symptom of Parkinson's disease is often an impaired sense of smell. This neurodegenerative disease primarily causes irreparable damage to nerve cells in a brain area involved in movement control. How it affects the olfactory system has been unclear.


Lewy bodies and Lewy neurites are filled with misfolded alpha-synuclein and are hallmark pathologies of brain tissue in Parkinson's disease. The nuclei of olfactory bulb cells are visualized with a blue-fluorescent dye. The abnormal alpha-synuclein is visualized in red fluorescence by staining with a specific antibody.

© Max Planck Research Unit for Neurogenetics


Ventral view of glomeruli in a human olfactory bulb. Single glomeruli are represented in confetti-like colours.

© Max Planck Research Unit for Neurogenetics

Researchers at the Max Planck Research Unit for Neurogenetics in Frankfurt and the University of Auckland in New Zealand have now carried out a study comparing the olfactory bulbs of individuals with and without Parkinson’s disease. The researchers found that the total volume occupied by the functional units in the olfactory bulb – the so-called glomeruli – is in Parkinson's cases only half that in normal individuals. Moreover, the distribution of the glomeruli within the olfactory bulb is altered in Parkinson's cases.

Nine out of ten patients with Parkinson’s disease suffer from defects of the sense of smell in the early stages of the disease - often years before the appearance of the motor symptoms that are characteristic of the disease. The motor symptoms are caused by a loss of nerve cells in the region of the substantia nigra in the brain that is responsible for controlling movement.

What causes this cell death has not yet been fully clarified, but a key role appears to be played by Lewy bodies. These are inclusions, inside the cells, that contain a misfolded, defective version of the alpha-synuclein protein. Lewy bodies are found in the olfactory bulb before they appear in the substantia nigra.

The so-called olfactory vector hypothesis for Parkinson's disease proposes that environmental factors, such as viruses, heavy metals or pesticides, are risk factors or even causes of the condition.

No other sensory system than the olfactory system is in such close contact with the external environment - the inhaled air. The hypothesis posits that the disease-causing agent is introduced from the nasal cavity into the olfactory bulb, where Parkinson’s disease is triggered and gradually spreads through other parts of the brain.

Intact tissue samples required

The human olfactory bulb remains poorly studied. Research on this brain structure depends critically on the availability of pristine samples, which are typically procured post mortem, from brain donors. The Neurological Foundation of New Zealand Douglas Human Brain Bank in Auckland, New Zealand works closely with families of patients suffering from neurodegenerative diseases to ensure ethical and effective collection of post mortem brain samples from diseased and non-diseased cases.

The precarious location of the olfactory bulb below the bulk of the brain and the many axons that connect it to the olfactory mucosa mean that special efforts must be made to protect the morphology of the olfactory bulb when collecting the samples.

The New Zealand-based researchers were able to collect olfactory bulbs fit for an in-depth quantitative study. In a globe-spanning project, the researchers processed the post mortem olfactory bulbs chemically, cut ten-micrometer thin sections throughout its entire length, and stained the sections with fluorescently labeled antibodies. The labeled sections were then scanned in Frankfurt, and the images reconstructed in 3D allowing for quantitative whole-olfactory bulb analyses.

New quantitive parameter

As glomeruli of the human olfactory bulb are difficult to count unambiguously, the researchers came up with a new, quantitative parameter: the global glomerular voxel volume. This quantity is the sum of the volume of all glomeruli. These are formed by the coalescence of axons of olfactory sensory neurons making synapses with olfactory bulb neurons.

Having defined this new parameter, the researchers compared the values between olfactory bulbs from normal and Parkinson's disease cases, and found that it was reduced by more than half. Whether the decrease is the result of Parkinson’s disease cases having fewer or smaller glomeruli, or is due to a combination of these two effects, remains to be seen.

In addition, the distribution of the glomeruli was altered. The olfactory bulbs of normal cases had 70 percent of their glomerular component in the bottom half of the olfactory bulb, but the olfactory bulbs of Parkinson’s disease cases contained only 44 percent in the bottom half.

“The preferential deficit of the glomerular component in the bottom half of the olfactory bulb, close to the olfactory mucosa, is consistent with the olfactory vector hypothesis of Parkinson's disease”, states Peter Mombaerts, M.D., Ph.D., director of the Max Planck Research Unit for Neurogenetics. The scientists also discovered that the greater the number of Lewy bodies with aggregated alpha synuclein, the smaller the glomerular component of the olfactory bulb. “This relationship could be an indication that the Lewy bodies are the cause of the reduction in glomerular volume,” explains Dr. Bolek Zapiec, first author of the paper.

The question now is which type of neurons in the olfactory bulb is affected first or foremost in Parkinson's disease. Next the researchers would like to identify the neurons in the olfactory bulb that are the most vulnerable.


Contact
Peter Mombaerts, M.D., Ph.D.
Max Planck Research Unit for Neurogenetics, Frankfurt am Main
Phone: +49 69 850033-4000
Email: peter.mombaerts@gen.mpg.de

Original publication
Bolek Zapiec, Birger V. Dieriks, Sheryl Tan, Richard L. M. Faull, Peter Mombaerts, Maurice A. Curtis

A ventral glomerular deficit in Parkinson’s disease revealed by whole olfactory bulb reconstruction.

Brain; 3 September, 2017

https://dx.doi.org/10.1093/brain/awx208

Peter Mombaerts, M.D., Ph.D. | Max Planck Research Unit for Neurogenetics, Frankfurt am Main
Further information:
https://www.mpg.de/11484476/parkinson-olfactory-system

More articles from Health and Medicine:

nachricht A step closer to cancer precision medicine
15.11.2019 | University of Helsinki

nachricht Can 'smart toilets' be the next health data wellspring?
14.11.2019 | Morgridge Institute for Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>