Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paper examines poison resistance in snakes around the world

20.03.2012
A new study by University of Notre Dame biologist Michael Pfrender and a team of researchers from the University of Nevada-Reno, Utah State University and the University of Virginia suggests that snakes from different regions of the world have evolved a similar, remarkable resistance to a deadly neurotoxin.

The finding, which appeared in the Proceedings of the National Academy of Sciences, greatly increases scientists' understanding of the genetic basis of adaptation and is a model for understanding the limits to adaptation and the degree to which evolutionary responses are predictable.

Pfrender and colleagues found that species of snakes in North, Central and South America and Asia that are able to feed on amphibians that secrete a deadly neurotoxic poison, tetrodotoxin or TTX. These snakes have similar mutations in a key sodium-channel gene that makes them highly resistant to TTX. These mutations prevent TTX from blocking the sodium channels in muscle, which would otherwise immobilize the snakes by paralyzing nervous and muscle tissue.

"The key finding is that adaptive evolution is constrained by the functional properties of the genes involved in these evolutionary responses," Pfrender said. "While there are many possible mutations that can improve fitness, in this case resistance to the neurotoxin TTX, many of these mutations have a cost because they change the normal function of the genes. So, when we look at multiple species that have independently adapted to TTX, we see a very similar, and limited, set of mutations involved. The story is one of repeated evolutionary change that occurs through a limited set of changes at the molecular level."

The study stems from Pfrender's interest in understanding how organisms deal with environmental change through adaptive evolution.

"We would like to know what the underlying genetic mechanisms are, and what the limits are to these adaptive responses," he said. "Ultimately, we would like to develop a predictive framework to gauge when natural populations will be able to evolve rapidly enough to persist in a changing environment and when the environmental change is too fast or too strong, leading to local extinction."

An understanding of how organisms deal with environmental change is relevant to the major themes of Notre Dame's Environmental Change Initiative and to the Eck Institute for Global Health, which examines disease resistance coupled with human health.

"Many organisms are exposed to toxic chemicals in their environment and this system is a model for understanding how they cope with this challenge through evolutionary change," Pfrender said. "A good example of the application of this knowledge is when we are trying to understand how parasites acquire drug resistance. How do they do it and what are the limits to this response? Can we create more effective drug strategies that capitalize on these functional constraints making it more difficult for parasites to evolve resistance?"

Pfrender and the Utah State researchers plan to study more snake species and to expand their research to a number of other species, including insects that prey on the toxic eggs of salamanders. They also are examining other genes closely related to the sodium channel genes that are the focus of the PNAS study to expand their understanding of how adaptation occurs.

Michael Pfrender | EurekAlert!
Further information:
http://www.nd.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>