Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pandemic toolkit offers flu with a view

16.12.2009
Health officials evaluate modeling tool to simulate various pandemic strategies

As communities brace for rising wintertime influenza cases, scientists are developing a mathematical and visual analytic toolkit to help health officials quickly analyze pandemics and craft better response strategies.

Scientists at the Department of Energy's Pacific Northwest National Laboratory have created a Pandemic Influenza Planning Tool to model the spread of a disease through various age groups and geographic populations. It also allows decision-makers to carefully assess the benefit of their decisions for different scenarios in advance.

"No single approach provides an optimal strategy when battling the spread of a pandemic," said Robert Brigantic, PNNL operations research scientist, "But, the use of this tool can allow health officials to more accurately predict how a disease might evolve when various mitigation strategies are applied."

These results could be valuable in developing an aggressive preventive strategy and deciding how best to use limited resources.

Brigantic's tool allows officials to easily evaluate potential response options by manipulating modeling parameters and running different simulations. For instance, officials could assess closing schools to decrease disease spread, initiate preventative media campaigns, or evaluate distributing antiviral medications to easily evaluate potential mitigation approaches.

In late September, PNNL demonstrated an early prototype of the tool during a Walla Walla County, Wash., Pandemic Influenza emergency exercise. Officials simulated an H1N1 Swine Flu outbreak and used the tool to predict resource needs and shortfalls, such as the loss of critical staff and lack of hospital beds.

"The tool illustrated how essential services can fail when critical employees became ill," said Gay Ernst, director of emergency management in Walla Walla County. "Visualizing possible disease progression enables us to consider how many critical personnel may be unavailable at one time and plan accordingly."

To help users also understand and visualize the effects of potential scenarios, PNNL teamed with Purdue University to add a visual analytic element to the toolkit called PanViz. It allows decision makers to visually track a simulation of spreading influenza on a video monitor. Users can toggle on and off various decision measures and visually see and examine the impact of those modifications and how they may alter the spread of the outbreak over time across counties in a state.

PNNL has demonstrated the planning tool during its development to Washington State Public Health as well as emergency officials in Los Angeles County and in Indiana. Researchers are improving the system's infectious disease modeling capabilities by making underlying algorithms more sophisticated and precise. Including more mitigation strategies and incorporating input from public health and emergency management experts is a priority as developers enhance the model.

This work was originally developed under a $50,000 subcontract with Purdue University to create the Pandemic Influenza Planning Tool for use by Indiana state as part of its pandemic influenza planning exercises. If additional funding is secured, Brigantic hopes to expand the model capabilities to see how additional social-distancing actions, such as telecommuting, cancelling social events and imposing quarantines might influence the virtual spread of a pandemic. He also envisions incorporating additional social modeling and behavioral responses.

Brigantic and his team are also conducting related modeling and simulation analysis for the Centers for Disease Control and Prevention to establish effective and efficient screening of passengers arriving on international flights for pandemic influenza.

Geoff Harvey | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>