Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018

Pain is a negative feeling that we want to get rid of as soon as possible. In order to protect our bodies, we react for example by withdrawing the hand. This action is usually understood as the consequence of the perception of pain. A team from the Technical University of Munich (TUM) has now shown that perception, the impulse to act and provision of energy to do so take place in the brain simultaneously and not, as was expected, one after the other.

Led by Markus Ploner, Heisenberg Professor for Human Pain Research, scientists from the Department of Neurology of the university hospital TUM Klinikum rechts der Isar investigated in detail how a painful event is processed in the brain.


Laura Tiemann, first author of the new study about pain perception, prepares together with Markus Ploner, Heisenberg Professor for Human Pain Research, a volunteer for the EEG-measurements.

Kurt Bauer / Technical University of Munich

For the first time they were able to show that the brain yields at least three different responses to a painful stimulus, and that these responses are simultaneous and independent of one another. The results may have fundamental repercussions for the understanding of pain and treatment of pain patients.

Pain embodies at least three factors: Perception of pain, an action such as withdrawing the hand from a hot stove, and a response of the autonomic nervous system which provides the necessary energy for the action. The autonomic nervous system controls essential functions such as heart rate, breathing, digestion and metabolism.

Combination of behavioral and EEG measurements

In their experiments, the researchers applied short pain stimuli of varying strengths to the back of the hand of healthy volunteers. The perception of pain was determined based on the participants evaluation of the stimulus on a rating scale.

The team, led by Markus Ploner, investigated the action component based on the reaction time the subjects needed to withdraw their fingers in response to the stimulus. Moreover, to determine the response of the autonomic nervous system, the team measured the sweat production at the interior surface of the hand.

For the entire duration of the experiment, brain activity was measured using electroencephalography (EEG). This method provides highly precise information on when and how nerve cells react to pain stimuli.

Pain components arise independently of one another

Ploner and his team applied a statistical method known as mediation analysis to the data. The method has been well established in the social sciences for some time now; however, this was its first application to EEG data. The team was thus able to find out which brain responses serve the three pain components, and when exactly they take place.

The results of the evaluations surprised the researchers: "For the first time we were able to see that the brain responses to the pain components did not take place one after the other, but rather in part simultaneously.

This means that the preparation for action and the provision of energy are not entirely dependent on the perception of pain; instead they are in part triggered independently of one another," explains Laura Tiemann, the study's lead author.

Comprehensive pain therapy for chronic pain patients

Although at first rather abstract, these findings could be of great importance to patients suffering from chronic pain. Ploner recommends considering all three components of pain in comprehensive pain therapy: "For chronic pain patients, it is possible that not only the perception of pain, but also the preparation and performance of actions against pain and the provision of the energy to do so are changed. Our findings are thus a biological argument for holistic pain therapy approaches that take different pain components into account. Such approaches would include psychotherapy and drug therapy as well as physiotherapy," Ploner says. This kind of therapy, referred to as Multimodal Pain Therapy, is already being offered at the TUM Interdisciplinary Center for Pain Medicine.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Ploner
Department of Neurology of the university hospital
Klinikum rechts der Isar of the Technical University of Munich
Tel.: 089 4140-4608
markus.ploner@tum.de

Originalpublikation:

Laura Tiemann, Vanessa D. Hohn, Son Ta Dinh, Elisabeth S. May, Moritz M. Nickel, Joachim Gross and Markus Ploner: Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli, Nature Communications, October 2018, DOI: 10.1038/s41467-018-06875-x (Open Access).
https://www.nature.com/articles/s41467-018-06875-x

Weitere Informationen:

http://www.professoren.tum.de/en/ploner-markus/ - Profile of Prof. Markus Ploner
https://www.painlabmunich.de/ - Research group of Markus Ploner
https://mediatum.ub.tum.de/1468890 - Download High Resolution Image

Dr. Ulrich Marsch | Technische Universität München

More articles from Health and Medicine:

nachricht When added to gene therapy, plant-based compound may enable faster, more effective treatments
18.10.2019 | Scripps Research Institute

nachricht Diabetes: A next-generation therapy soon available?
17.10.2019 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>