Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018

Pain is a negative feeling that we want to get rid of as soon as possible. In order to protect our bodies, we react for example by withdrawing the hand. This action is usually understood as the consequence of the perception of pain. A team from the Technical University of Munich (TUM) has now shown that perception, the impulse to act and provision of energy to do so take place in the brain simultaneously and not, as was expected, one after the other.

Led by Markus Ploner, Heisenberg Professor for Human Pain Research, scientists from the Department of Neurology of the university hospital TUM Klinikum rechts der Isar investigated in detail how a painful event is processed in the brain.


Laura Tiemann, first author of the new study about pain perception, prepares together with Markus Ploner, Heisenberg Professor for Human Pain Research, a volunteer for the EEG-measurements.

Kurt Bauer / Technical University of Munich

For the first time they were able to show that the brain yields at least three different responses to a painful stimulus, and that these responses are simultaneous and independent of one another. The results may have fundamental repercussions for the understanding of pain and treatment of pain patients.

Pain embodies at least three factors: Perception of pain, an action such as withdrawing the hand from a hot stove, and a response of the autonomic nervous system which provides the necessary energy for the action. The autonomic nervous system controls essential functions such as heart rate, breathing, digestion and metabolism.

Combination of behavioral and EEG measurements

In their experiments, the researchers applied short pain stimuli of varying strengths to the back of the hand of healthy volunteers. The perception of pain was determined based on the participants evaluation of the stimulus on a rating scale.

The team, led by Markus Ploner, investigated the action component based on the reaction time the subjects needed to withdraw their fingers in response to the stimulus. Moreover, to determine the response of the autonomic nervous system, the team measured the sweat production at the interior surface of the hand.

For the entire duration of the experiment, brain activity was measured using electroencephalography (EEG). This method provides highly precise information on when and how nerve cells react to pain stimuli.

Pain components arise independently of one another

Ploner and his team applied a statistical method known as mediation analysis to the data. The method has been well established in the social sciences for some time now; however, this was its first application to EEG data. The team was thus able to find out which brain responses serve the three pain components, and when exactly they take place.

The results of the evaluations surprised the researchers: "For the first time we were able to see that the brain responses to the pain components did not take place one after the other, but rather in part simultaneously.

This means that the preparation for action and the provision of energy are not entirely dependent on the perception of pain; instead they are in part triggered independently of one another," explains Laura Tiemann, the study's lead author.

Comprehensive pain therapy for chronic pain patients

Although at first rather abstract, these findings could be of great importance to patients suffering from chronic pain. Ploner recommends considering all three components of pain in comprehensive pain therapy: "For chronic pain patients, it is possible that not only the perception of pain, but also the preparation and performance of actions against pain and the provision of the energy to do so are changed. Our findings are thus a biological argument for holistic pain therapy approaches that take different pain components into account. Such approaches would include psychotherapy and drug therapy as well as physiotherapy," Ploner says. This kind of therapy, referred to as Multimodal Pain Therapy, is already being offered at the TUM Interdisciplinary Center for Pain Medicine.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Markus Ploner
Department of Neurology of the university hospital
Klinikum rechts der Isar of the Technical University of Munich
Tel.: 089 4140-4608
markus.ploner@tum.de

Originalpublikation:

Laura Tiemann, Vanessa D. Hohn, Son Ta Dinh, Elisabeth S. May, Moritz M. Nickel, Joachim Gross and Markus Ploner: Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli, Nature Communications, October 2018, DOI: 10.1038/s41467-018-06875-x (Open Access).
https://www.nature.com/articles/s41467-018-06875-x

Weitere Informationen:

http://www.professoren.tum.de/en/ploner-markus/ - Profile of Prof. Markus Ploner
https://www.painlabmunich.de/ - Research group of Markus Ploner
https://mediatum.ub.tum.de/1468890 - Download High Resolution Image

Dr. Ulrich Marsch | Technische Universität München

More articles from Health and Medicine:

nachricht Bioinspired nanoscale drug delivery method developed by WSU, PNNL researchers
10.01.2019 | Washington State University

nachricht How herpesviruses shape the immune system
09.01.2019 | German Center for Infection Research

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

Im Focus: Tumors backfire on chemotherapy

Some patients with breast cancer receive chemotherapy before the tumor is removed with surgery. This approach, called 'neoadjuvant' therapy, helps to reduce the size of the tumor to facilitate breast-conserving surgery, and can even eradicate the tumor, leaving few or no cancerous cells for the surgeon to remove. In those cases, the patients are very likely to remain cancer-free for life after surgery.

But not all tumors shrink under chemotherapy. If the tumor resists neoadjuvant therapy, there can be a higher risk of developing metastatic disease, meaning...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Doing More with Less: Stem Cells Regulate Their Fate by Altering Their Stiffness

14.01.2019 | Life Sciences

11<sup>th</sup> International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

Arbitrary quantum channel simulation for a superconducting qubit

14.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>