Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxytocin sharpens the senses

25.04.2016

The neuropeptide Oxytocin provides a new therapeutic approach to psychiatric disorders that involve impaired social interactions. Scientists at the Central Institute of Mental Health now reveal a mechanism how Oxytocin improves the perception and later recognition of social information from the systems to the synapse level. The study „Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing” has been published in the renowned journal Neuron 21 April 2016.

Social recognition requires the perception of relevant social cues and the identity of others to elicit proper responses. Problems in the early perception of social information will impact consequently subsequent stages of information processing and eventual social responses.


Social recognition in rodents bears similarities to the "Memory Game"

© Idea Cathrin Huber, Artwork Sebastian Wieland.

Hans Asperger, a pediatrician after whom one form of autism is named, had already highlighted altered sensory perception as a hallmark of the disorder. These alterations in sensory processing have gained progressively more attention in the last few years and are now also added to the latest revision of the American diagnostic research criteria.

Neuronal processing underlying social interaction can be affected at different levels. The neuropeptide Oxytocin has turned out to be a key modulator in the perception of others as research groups at the Central Institute had shown in the last years.

Oxytocin is tested in many studies for instance to support psychotherapy trying to alleviate deficits in the recognition of interpersonal interactions. The mechanisms have however not been entirely clarified how Oxytocin modifies the perception of social cues.

Scientists around the Neurobiologist Lennart Oettl and the Psychiatrist and Neurophysiologist Dr. Wolfgang Kelsch (Department of Psychiatry and Psychotherapy, Head of the Research Group of Developmental Biology of Psychiatric Disorders) now revealed a mechanism in mice how Oxytocin can modulate the perception and later recognition of other individuals.

Just like most animals, mice use primarily olfactory cues for social recognition. The scientists found that Oxytocin released from the brain improves the signal-to-noise in sensory information processing. Oxytocin activates so-called top-down projections from the cortex down to sensory networks where the top-down inputs drive inhibitory neurons.

This top-down drive of inhibition improves signal quality in the sense of attentional filtering. The modified sensory information is then propagated to higher cortical areas. Through this mechanism, Oxytocin modifies the processing of social cues and improves later recognition of other individuals.

„It is a little bit like playing the game Memory where you have to sharpen your senses on distinguish similar objects and later remember them when they appear again. Oxytocin seems to promote these two aspects in social recognition“, explains Wolfgang Kelsch. This means that Oxytocin sets the sensory processing network in a particular state for the efficient processing of social cues.

Oxytocin acts at multiple levels of the processing of social cues. The present finding highlights that Oxytocin’s actions early in the information stream will impact downstream processes. The here described mechanisms could also apply to psychiatric disorders and explain some of the altered perception observed with autism, and, as recent studies in humans show, potentially serve as a starting point for more objective diagnostic criteria.

Publication:
Oettl LL, Ravi R, Schneider M, Scheller M, Schneider P, Mitre M, da Silva Gouveia M, Froemke RC, Chao MV, Young WS, Meyer-Lindenberg A, Grinevich V, Shusterman, Kelsch W (2016) Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron (2016) http://dx.doi.org/10.1016/j.neuron.2016.03.033

Contact:
Dr. Wolfgang Kelsch
Heidelberg University, Medical Faculty Mannheim
Central Institute of Mental Health
J5, D-68159 Mannheim
Tel.: +49(0)621 1703 6213
E-Mail: wolfgang.kelsch@zi-mannheim.de

Weitere Informationen:

https://www.zi-mannheim.de/en/institut/communication-media.html

Sigrid Wolff | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>