Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overdosing on Calcium

19.06.2018

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of Biofunctional Macromolecular Chemistry at the Institute for Macromolecular Chemistry and Professor of Cell Signalling Environments in the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg led the study. The team published the results in the prestigious journal Proceedings of the National Academy of Sciences – USA.


The image is false colored scanning electron micrograph, where mineral phase (biomimetic bone like hydroxyapatite) is denoted by green and the matrix deposited by mesenchymal stem cells is shown in purple.

Source: Melika Sarem, Vincent Ahmadi and V. Prasad Shastri

Bone tissue is a nano-composite: The inorganic mineral phase so called hydroxyapatite confers the bone stability, and these calcium-containing nano crystals are dispersed in an organic framework consisting of the protein collagen. Although bone tissue rejuvenates itself throughout one’s life, inducing damaged bone to repair has proved challenging.

The destruction of unhealthy bone is a necessary step in the saga of new bone formation. During this destruction of bone, many biomolecules that are stored in the organic matrix are released and they play a role in the bone restoration process by coaxing mesenchymal stem cells (MSCs) that reside in the bone marrow – to actively form bone.

This step presents a crossroad of sorts in the process of bone regeneration in that, MSCs can become bone cells and deposit bone or become cartilage cells and deposit a cartilage matrix (the callus) which then is transformed into bone. How the accompanying degradation of the hydroxyapatite matrix affects this crossroad has remained a mystery of sorts.

Using a biomimetic bone-like mineral phase developed (doi: 10.1002/adma.201701629) in the laboratory of Shastri, the team of scientists have unraveled that the bone mineral phase is a key “decision maker” in bone formation. In the study post-doctoral associate Dr. Melika Sarem from the group of Shastri, in collaboration with the research group of Prof. Ivan Martin at the Department of Biomedicine (University Hospital Basel, University of Basel), have discovered that the mineral phase of bone can stimulate a receptor called extracellular calcium sensing receptor (CaSR), a protein that senses calcium outside the cells and is expressed by MSCs. Over stimulation of CaSR forces MSCs to directly form bone as opposed to via a cartilage step.

They further report that interfering with signaling via CaSR can completely shut down the formation of bone in vivo. However, in a twist to this molecular dance, they have found that stimulating parathyroid hormone-1 receptor (PTH1R), the key regulator of calcium ion homeostasis, can rescue MSCs from the clutches of CaSR and promote the formation of bone via a cartilage intermediate. “Our discovery offers new insights into how bone mineral phase can dictate new bone formation” says Prof. Shastri. The findings of our study have huge implication for designing novel implant surface for bone regeneration” adds Dr. Sarem.

In diseases such as osteoporosis, bone is degraded with very little renewal of the lost bone. “Our study places CaSR squarely at the middle of the bone regeneration paradigm and we can now say that it is a master regulator of bone formation and this might explain why osteoporotic patients have a hard time healing their fractures” says Shastri.

Original publication:
Melika Sarem, Miriam Heizmann, Andrea Barbero, Ivan Martin, and V. Prasad Shastri (2018): Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. In: PNAS. doi: 10.1073/pnas.1805159115

Caption:
The image is false colored scanning electron micrograph, where mineral phase (biomimetic bone like hydroxyapatite) is denoted by green and the matrix deposited by mesenchymal stem cells is shown in purple.
Source: Melika Sarem, Vincent Ahmadi and V. Prasad Shastri

Contact:
Prof. Dr. Prasad Shastri
Institute for Macromolecular Chemistry & BIOSS Centre for Biological Signalling Studies
University of Freiburg
Tel.: 0761/203-6271
prasad.shastri@makro.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/overdosing-on-calcium?s...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Testing corneal cell quality? Apply physics
23.07.2019 | Kyoto University

nachricht First impressions go a long way in the immune system
22.07.2019 | Weizmann Institute of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>