Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overdosing on Calcium

19.06.2018

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of Biofunctional Macromolecular Chemistry at the Institute for Macromolecular Chemistry and Professor of Cell Signalling Environments in the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg led the study. The team published the results in the prestigious journal Proceedings of the National Academy of Sciences – USA.


The image is false colored scanning electron micrograph, where mineral phase (biomimetic bone like hydroxyapatite) is denoted by green and the matrix deposited by mesenchymal stem cells is shown in purple.

Source: Melika Sarem, Vincent Ahmadi and V. Prasad Shastri

Bone tissue is a nano-composite: The inorganic mineral phase so called hydroxyapatite confers the bone stability, and these calcium-containing nano crystals are dispersed in an organic framework consisting of the protein collagen. Although bone tissue rejuvenates itself throughout one’s life, inducing damaged bone to repair has proved challenging.

The destruction of unhealthy bone is a necessary step in the saga of new bone formation. During this destruction of bone, many biomolecules that are stored in the organic matrix are released and they play a role in the bone restoration process by coaxing mesenchymal stem cells (MSCs) that reside in the bone marrow – to actively form bone.

This step presents a crossroad of sorts in the process of bone regeneration in that, MSCs can become bone cells and deposit bone or become cartilage cells and deposit a cartilage matrix (the callus) which then is transformed into bone. How the accompanying degradation of the hydroxyapatite matrix affects this crossroad has remained a mystery of sorts.

Using a biomimetic bone-like mineral phase developed (doi: 10.1002/adma.201701629) in the laboratory of Shastri, the team of scientists have unraveled that the bone mineral phase is a key “decision maker” in bone formation. In the study post-doctoral associate Dr. Melika Sarem from the group of Shastri, in collaboration with the research group of Prof. Ivan Martin at the Department of Biomedicine (University Hospital Basel, University of Basel), have discovered that the mineral phase of bone can stimulate a receptor called extracellular calcium sensing receptor (CaSR), a protein that senses calcium outside the cells and is expressed by MSCs. Over stimulation of CaSR forces MSCs to directly form bone as opposed to via a cartilage step.

They further report that interfering with signaling via CaSR can completely shut down the formation of bone in vivo. However, in a twist to this molecular dance, they have found that stimulating parathyroid hormone-1 receptor (PTH1R), the key regulator of calcium ion homeostasis, can rescue MSCs from the clutches of CaSR and promote the formation of bone via a cartilage intermediate. “Our discovery offers new insights into how bone mineral phase can dictate new bone formation” says Prof. Shastri. The findings of our study have huge implication for designing novel implant surface for bone regeneration” adds Dr. Sarem.

In diseases such as osteoporosis, bone is degraded with very little renewal of the lost bone. “Our study places CaSR squarely at the middle of the bone regeneration paradigm and we can now say that it is a master regulator of bone formation and this might explain why osteoporotic patients have a hard time healing their fractures” says Shastri.

Original publication:
Melika Sarem, Miriam Heizmann, Andrea Barbero, Ivan Martin, and V. Prasad Shastri (2018): Hyperstimulation of CaSR in human MSCs by biomimetic apatite inhibits endochondral ossification via temporal down-regulation of PTH1R. In: PNAS. doi: 10.1073/pnas.1805159115

Caption:
The image is false colored scanning electron micrograph, where mineral phase (biomimetic bone like hydroxyapatite) is denoted by green and the matrix deposited by mesenchymal stem cells is shown in purple.
Source: Melika Sarem, Vincent Ahmadi and V. Prasad Shastri

Contact:
Prof. Dr. Prasad Shastri
Institute for Macromolecular Chemistry & BIOSS Centre for Biological Signalling Studies
University of Freiburg
Tel.: 0761/203-6271
prasad.shastri@makro.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/overdosing-on-calcium?s...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

nachricht Progress in the treatment of aggressive brain tumors
18.02.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

The Internet of Things: TU Graz researchers increase the dependability of smart systems

18.02.2019 | Interdisciplinary Research

Laser Processes for Multi-Functional Composites

18.02.2019 | Process Engineering

Scientists Create New Map of Brain’s Immune System

18.02.2019 | Studies and Analyses

VideoLinks
Science & Research
Overview of more VideoLinks >>>